Computing Curves on Surfaces

Mckenzie West
University of Wisconsin-Eau Claire

Jen Berg
Bucknell University

Rachel Davis
University of Wisconsin-Madison

Marie Jameson
University of Tennessee

Bianca Thompson
Westminster College

AMS Special Session on Algorithms, Experiments, and Applications in Number Theory
January 16, 2020
Del Pezzo surfaces are rational surfaces that exist in degrees 1 thru 9

(degree ≥ 5) satisfy the Hasse Principle

$$S(\mathbb{Q}) = \emptyset \iff S(\mathbb{Q}_p) = \emptyset \text{ for some } p, \text{ prime or } \infty.$$

(degree 4) smooth intersections of two quadrics in \mathbb{P}^4
(degree 3) cubic surfaces in \mathbb{P}^3
(degree 2) $w^2 = f_4(x, y, z, w)$ in $\mathbb{P}(1, 1, 1, 2)$
(degree 1) defined by a degree 6 polynomial in $\mathbb{P}(1, 1, 2, 3)$
e.g., $w^2 = z^3 + 27x^6 + 16y^6$
If S is a del Pezzo surface of degree d defined over \mathbb{Q}, then S contains EXACTLY the given number of exceptional curves:

<table>
<thead>
<tr>
<th>d</th>
<th>#ExC’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>1</td>
<td>240</td>
</tr>
</tbody>
</table>
Curves on del Pezzo Surfaces

We can use these curves to generate nearly all of Pic $\overline{S} \simeq \mathbb{Z}^r$, a group of equivalence classes of curves on \overline{S}.

<table>
<thead>
<tr>
<th>d</th>
<th>#ExC’s</th>
<th>$r = 10 - d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>240</td>
<td>9</td>
</tr>
</tbody>
</table>
Example.
Consider the cubic surface:

\[S : x^3 + y^3 + z^3 = w^3 \]

The lines are easy to find.
Let Me Show You

Example.

We isolate pairs of variables and equate as needed:

\[x^3 + y^3 + z^3 = w^3 \]

\[\begin{cases}
 x = \zeta_3^i w \\
 y = -\zeta_3^j z
\end{cases} \quad \text{for } 0 \leq i, j \leq 2 \]

And that makes 27 lines with field of definition \(Q(\zeta_3^3) \).

Oh how lucky we were with this equation.
Let Me Show You

Example.

We isolate pairs of variables and equate as needed:

\[x^3 + y^3 + z^3 = w^3 \]

\[\begin{cases}
 x = \zeta_3^i w \\
 y = -\zeta_3^j z
\end{cases} \quad \text{for } 0 \leq i, j \leq 2 \]

\[x^3 + y^3 + z^3 = w^3 \]

\[\begin{cases}
 y = \zeta_3^i w \\
 x = -\zeta_3^j z
\end{cases} \quad \text{for } 0 \leq i, j \leq 2 \]

\[x^3 + y^3 + z^3 = w^3 \]

\[\begin{cases}
 z = \zeta_3^i w \\
 x = -\zeta_3^j y
\end{cases} \quad \text{for } 0 \leq i, j \leq 2 \]

And that makes 27 lines with field of definition \(\mathbb{Q}(\zeta_3) \).
Let Me Show You

Example.

We isolate pairs of variables and equate as needed:

\[
x^3 + y^3 + z^3 = w^3
\]

\[
\begin{align*}
x & = \zeta_3^i w \\
y & = -\zeta_3^j z
\end{align*}
\]

for \(0 \leq i, j \leq 2\)

\[
x^3 + y^3 + z^3 = w^3
\]

\[
\begin{align*}
y & = \zeta_3^i w \\
x & = -\zeta_3^j z
\end{align*}
\]

for \(0 \leq i, j \leq 2\)

\[
x^3 + y^3 + z^3 = w^3
\]

\[
\begin{align*}
z & = \zeta_3^i w \\
x & = -\zeta_3^j y
\end{align*}
\]

for \(0 \leq i, j \leq 2\)

And that makes 27 lines with field of definition \(\mathbb{Q}(\zeta_3)\). Oh how lucky we were with this equation.
Another Cubic

Example.
Now consider the cubic surface

\[S : x^3 + 2xy^2 + 11y^3 + 3xz^2 + 5y^2w + 7zw^2 \]

the lines here are not so obvious.
Let’s use a computer to find the lines and their field of definition.

Linear Algebra.
All lines in three dimensional projective space can be parametrized as

\[\begin{bmatrix} x & y & z & w \end{bmatrix} = \begin{bmatrix} s & t \end{bmatrix} A \]

where \(A \) is a \(2 \times 4 \) matrix in reduced row echelon form.
Example.

\[S : x^3 + 2xy^2 + 11y^3 + 3xz^2 + 5y^2w + 7zw^2 \]

\[\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} s \\ t \end{bmatrix} A \]

For example, let \(A = \begin{bmatrix} 1 & 0 & \alpha & \beta \\ 0 & 1 & \gamma & \delta \end{bmatrix} \).

Substitute into the polynomial for \(S \) via the parametrization,

\[s^3 + 2st^2 + 11t^3 + 3s(\alpha s + \gamma t)^2 + 5t^2(\beta s + \delta t) + 7(\alpha s + \gamma t)(\beta s + \delta t)^2 \]
Approximate Algorithm.

Repeat the following for all possible matrices, A:

- Isolate coefficients of s^3, s^2t, st^2 and t^3.

\[
\begin{align*}
7ab^2 + 3a^2 + 1 \\
7b^2c + 14abd + 6ac \\
14bcd + 7ad^2 + 3c^2 + 5b + 2 \\
7cd^2 + 5d + 11
\end{align*}
\]
Our Sage Work

Approximate Algorithm.

Repeat the following for all possible matrices, A:

- Isolate coefficients of s^3, $s^2 t$, st^2 and t^3.
- Form an ideal in $\mathbb{Q}[\alpha, \beta, \gamma, \delta]$.
Approximate Algorithm.

Repeat the following for all possible matrices, A:

- Isolate coefficients of s^3, $s^2 t$, st^2 and t^3.
- Form an ideal in $\mathbb{Q}[\alpha, \beta, \gamma, \delta]$.
- Use the Sage Groebner basis functionality to obtain a polynomial defining a number field over which the solutions to the system exist.
Result (Berg, Davis, Jameson, Thompson, W.).

Input: Homogeneous polynomial defining a nice cubic surface
Output: Polynomial \(f \) whose splitting field \(L \) is the field of definition of the 27 lines on the surface.
Result (Berg, Davis, Jameson, Thompson, W.).

Input: Homogeneous polynomial defining a nice cubic surface
Output: Polynomial f whose splitting field L is the field of definition of the 27 lines on the surface.

Example.

```
get_polynomial_to_split(f)
```

\[
T^{27} + \frac{99}{5} T^{26} + \frac{3299}{25} T^{25} + \frac{36289}{125} T^{24} + \frac{264}{49} T^{23} + \frac{10296}{245} T^{22} + \frac{7725912}{60025} T^{21} + \frac{10026984}{42875} T^{20} + \frac{51920262}{117649} T^{19} \\
+ \frac{605313522}{588245} T^{18} + \frac{4659518538}{2941225} T^{17} + \frac{11953541358}{2941225} T^{16} + \frac{69318152838}{5764801} T^{15} + \frac{626176481634}{28824005} T^{14} \\
+ \frac{156330541343898}{7061881225} T^{13} + \frac{70137153565182}{7061881225} T^{12} + \frac{6440174126145}{13841287201} T^{11} + \frac{44233686867843}{69206436005} T^{10} \\
+ \frac{33749245501389}{49433168575} T^9 + \frac{250779458513133}{346032180025} T^8 + \frac{10050474124746}{13841287201} T^7 + \frac{4683175938738}{9886633715} T^6 \\
+ \frac{990986421546}{49433168575} T^5 - \frac{6392766446550}{13841287201} T^4 - \frac{11720071818675}{13841287201} T^3 - \frac{1718943866739}{1977326743} T^2 \\
- \frac{170175442807161}{346032180025} T - \frac{207992207875419}{1730160900125}
\]
Second Algorithm

Result (Berg, Davis, Jameson, Thompson, W.).

Input: Homogeneous polynomial defining a nice cubic surface
Output: Parametrizations of the 27 lines on the surface defined by the polynomial.

Warning: This algorithm only works for rather simple surfaces.

Example.

```python
P.<x,y,z,w> = PolynomialRing(QQ)
find_27_lines(xˆ3 + yˆ3 + zˆ3 - wˆ3)
```

\[
\begin{align*}
y + (-\alpha + 1)w, & \quad x + z \\
\alpha w, & \quad x + z \\
y - w, & \quad x + z \\
y + z, & \quad x + (-\alpha + 1)w \\
\end{align*}
\]

...
Second Algorithm

Result (Berg, Davis, Jameson, Thompson, W.).

Input: Homogeneous polynomial defining a nice cubic surface
Output: Parametrizations of the 27 lines on the surface defined by the polynomial.

Warning: This algorithm only works for rather simple surfaces.

Example.

P.<x,y,z,w> = PolynomialRing(QQ)
find_27_lines(x^3 + y^3 + z^3 - w^3)

[y + (-\alpha + 1) w, x + z]
[y + \alpha w, x + z]
[y - w, x + z]
[y + z, x + (-\alpha + 1) w]
::
A Moment of Reflection

Magma

R1<x,y,z,w> := PolynomialRing(Rationals(),4);
f := x^3+2*x*y^2+11*y^3+3*x*z^2+5*y^2*w+7*z*w^2;
S := Scheme(ProjectiveSpace(R1),f);

R2<a,b,c,d> := PolynomialRing(Rationals(),4);
R3<s,t> := PolynomialRing(R2,2);
g := Evaluate(f,[s,t,a*s+c*t,b*s+d*t]);
I:=Ideal(Coefficients(g));
G:=GroebnerBasis(I);

X := Scheme(AffineSpace(R2),Coefficients(g));
pts, K := PointsOverSplittingField(X);
A Little Motivation

Let S be a *nice* surface.

$$S(\mathbb{Q}) \quad \Pi'_p S(\mathbb{Q}_p) = S(\mathbb{A})$$

↑

Cool! \quad OK

Hard! \quad Easy

Sad news:
– It is not necessarily guaranteed that $S(\mathbb{Q})$ is dense in $S(\mathbb{A})$.
– It is not even guaranteed that if $S(\mathbb{A}) \neq \emptyset$, then $S(\mathbb{Q}) \neq \emptyset$.
– It is incredibly difficult, in general, to learn about $S(\mathbb{Q})$, if we know $S(\mathbb{A})$.
Let S be a *nice* surface.

$$S(\mathbb{Q}) \subseteq \prod'_p S(\mathbb{Q}_p) = S(\mathbb{A})$$

↑

Cool! OK

Hard! Easy
A Little Motivation

Let S be a *nice* surface.

$$S(\mathbb{Q}) \subseteq \prod'_p S(\mathbb{Q}_p) = S(\mathbb{A})$$

↑

Cool! OK

Hard! Easy

Sad news:

– It is not necessarily guaranteed that $S(\mathbb{Q})$ is dense in $S(\mathbb{A})$.
Let S be a *nice* surface.

\[
S(\mathbb{Q}) \subseteq \prod_{p} S(\mathbb{Q}_p) = S(\mathbb{A})
\]

\[
\uparrow \quad \uparrow
\]

Cool! OK

Hard! Easy

Sad news:

- It is not necessarily guaranteed that $S(\mathbb{Q})$ is dense in $S(\mathbb{A})$.
- It is not even guaranteed that if $S(\mathbb{A}) \neq \emptyset$ then $S(\mathbb{Q}) \neq \emptyset$.

A Little Motivation

Let S be a *nice* surface.

\[
S(\mathbb{Q}) \subseteq \prod'_p S(\mathbb{Q}_p) = S(\mathbb{A})
\]

\[
\uparrow
\quad \text{Cool!}
\]
\[
\uparrow
\quad \text{OK}
\]
\[
\text{Hard!}
\]
\[
\text{Easy}
\]

Sad news:

- It is not necessarily guaranteed that $S(\mathbb{Q})$ is dense in $S(\mathbb{A})$.
- It is not even guaranteed that if $S(\mathbb{A}) \neq \emptyset$ then $S(\mathbb{Q}) \neq \emptyset$.
- It is incredibly difficult, in general, to learn about $S(\mathbb{Q}) \neq \emptyset$ if we know $S(\mathbb{A})$.
A Little Motivation

Let S be a *nice* surface defined over \mathbb{Q}.

$$S(\mathbb{Q}) \subseteq \prod'_p S(\mathbb{Q}_p) = S(\mathbb{A})$$

Cool! \hspace{1cm} OK

Hard! \hspace{1cm} Easy

Good news: Evidence shows $S(\mathbb{A}) \subseteq \text{Br}$ if and only if $S(\mathbb{Q}) = \emptyset$ for rational surfaces.

The Brauer–Manin Obstruction is the only obstruction to the Hasse Principle – When computing $S(\mathbb{A})$, we are really looking for $\text{Br}_S/\text{Br}_\mathbb{Q}$, which can be computed using the curves on the surface.
A Little Motivation

Let S be a *nice* surface defined over \mathbb{Q}.

$$S(\mathbb{Q}) \subseteq S(\mathbb{A})^{Br} \subseteq \prod_p S(\mathbb{Q}_p) = S(\mathbb{A})$$

Cool! OK
Hard! Easy

Good news: – Evidence shows $S(\mathbb{Q}) = \emptyset$ if and only if $S(\mathbb{A}) = \emptyset$ for rational surfaces.

The Brauer–Manin Obstruction is the only obstruction to the Hasse Principle – When computing $S(\mathbb{A})^{Br}$ we are really looking for $Br_{S/\mathbb{Q}}$, which can be computed using the curves on the surface.
A Little Motivation

Let S be a \textit{nice} surface defined over \mathbb{Q}.

$$
S(\mathbb{Q}) \subseteq S(A)^{Br} \subseteq \prod_p S(\mathbb{Q}_p) = S(A)
$$

Cool! OK

Hard! Easy

Good news:

– Evidence shows $S(A)^{Br} = \emptyset$ if and only if $S(\mathbb{Q}) = \emptyset$ for rational surfaces.

\textit{The Brauer–Manin Obstruction is the only obstruction to the Hasse Principle}
A Little Motivation

Let S be a *nice* surface defined over \mathbb{Q}.

$$S(\mathbb{Q}) \subseteq S(\mathbb{A})^{Br} \subseteq \prod'_{p} S(\mathbb{Q}_p) = S(\mathbb{A})$$

Cool! OK

Hard! Easy

Good news:

- Evidence shows $S(\mathbb{A})^{Br} = \emptyset$ if and only if $S(\mathbb{Q}) = \emptyset$ for rational surfaces.
 The Brauer–Manin Obstruction is the only obstruction to the Hasse Principle

- When computing $S(\mathbb{A})^{Br}$ we are really looking for $Br S / Br \mathbb{Q}$, which can be computed using the *curves on the surface*.
Our Ultimate Long-Term Goal

Theorem (Corn).

If S is a del Pezzo surface of degree d, then $\text{Br } S / \text{Br } \mathbb{Q}$ is isomorphic to one of the following:

- all d: \{1\}
- if $d \leq 4$: $\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$
- if $d \leq 3$: $\mathbb{Z}/3\mathbb{Z}$, $(\mathbb{Z}/3\mathbb{Z})^2$
- if $d \leq 2$: $(\mathbb{Z}/2\mathbb{Z})^3$, $(\mathbb{Z}/2\mathbb{Z})^4$, $(\mathbb{Z}/2\mathbb{Z})^5$, $(\mathbb{Z}/2\mathbb{Z})^6$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^2$, $(\mathbb{Z}/4\mathbb{Z})^2$
- if $d \leq 1$: 14 element list that includes $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$

Goal.

Find a 5-torsion element in $\text{Br } S / \text{Br } \mathbb{Q}$.
An Important Result to Consider

Theorem (Carter).

Let S be a del Pezzo surface of degree 1 defined over \mathbb{Q}. There is a nontrivial element of $(\text{Br } S/\text{Br } \mathbb{Q})[5]$ if and only if

there is a “ten-tuple-five” on \overline{S} that is stabilized by the absolute Galois group $G = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ such that G does not fix any

(a) “five” within the “ten-tuple-five”;
(b) “quadruple-five” within the “ten-tuple-five”;
(c) “ten-tuple-one” within the “ten-tuple-five”;
(d) “ten-tuple-three” within the “ten-tuple-five”.