A Robust Implementation of an Algorithm to Solve the S-unit Equation

Mckenzie West
University of Wisconsin - Eau Claire

November 1, 2019

Joint with...

Alejandra Alvarado
Eastern Illinois University

Angelos Koutsianas
University of British Columbia

Beth Malmskog
Colorado College

Christopher Rasmussen
Wesleyan University

Christelle Vincent
University of Vermont
A simple equation

\[x + y = 1 \]
Applications of the S-unit equation

- Classification of genus 2 curves
- An asymptotic version of Fermat's Last Theorem
- Ramanujan–Nagell equations
Tools Used to Solve the S-unit equation

- \mathbb{Q}-linear combinations of logarithms (archimedean and not)
- LLL-algorithm (Lenstra, Lenstra, Lovász)
- Sieving and/or Brute Force
What are S-integers?

<table>
<thead>
<tr>
<th>Field</th>
<th>\mathbb{Q}</th>
<th>K/\mathbb{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primes</td>
<td>p</td>
<td>\mathfrak{p}</td>
</tr>
<tr>
<td>Integers</td>
<td>\mathbb{Z}</td>
<td>\mathcal{O}_K</td>
</tr>
<tr>
<td>Units</td>
<td>${\pm 1}$</td>
<td>$\omega_K \times \mathbb{Z}^r$</td>
</tr>
<tr>
<td>Valuations</td>
<td>$v_p(\alpha)$</td>
<td>$v_\mathfrak{p}(\alpha)$</td>
</tr>
<tr>
<td>Absolute Values</td>
<td>$</td>
<td>\cdot</td>
</tr>
</tbody>
</table>

(a) $K = \mathbb{Q}$, $\mathbb{Z} = \{\alpha \in \mathbb{Q} : v_p(\alpha) \geq 0 \ \forall \ p \ \text{prime}\}$

(b) K/\mathbb{Q}, $\mathcal{O}_K = \{\alpha \in K : v_\mathfrak{p}(\alpha) \geq 0 \ \forall \ \mathfrak{p} \ \text{prime ideal}\}$