The arithmetic of a family of degree-two *semi*-diagonal K3 surfaces

Mckenzie West
Reed College, Mathematics Department
joint with Florian Bouyer, Edgar Costa, Dino Festi, and Christopher Nicholls

JMM 2017
Atlanta, GA

January 6, 2017
Rational Points

\textbf{Question}

\textbf{Fact}

\[X(Q) \subseteq X(A) \]

\[B_r \subseteq X(A) \]

\textbf{Good News:}

'Is \[X(A) = \emptyset \]?' is easy!
Question

What is $X(\mathbb{Q})$?
Question

Is $X(\mathbb{Q}) \neq \emptyset$?
Question

Is $X(\mathbb{Q}) = \emptyset$?
Rational Points

Question

Is $X(\mathbb{Q}) = \emptyset$?

Fact

$X(\mathbb{Q}) \subseteq X(\mathbb{A})^{Br} \subseteq X(\mathbb{A})$
Rational Points

Question

Is $X(Q) = \emptyset$?

Fact

$X(Q) \subseteq X(A)^{Br} \subseteq X(A)$

Good News: ’Is $X(A) = \emptyset$?’ is easy!
A little about $X(\mathbb{A})^{Br}$
A little about $X(\mathbb{A})^{Br}$

- $X(\mathbb{A}) \neq \emptyset$ is a finite computation
A little about $X(A)^{Br}$

- $X(A) \neq \emptyset$ is a finite computation
- $X(A)^{Br} := \bigcap_{\alpha \in \text{Br}(X)} X(A)^{\alpha}$
A little about $X(\mathbb{A})^{Br}$

- $X(\mathbb{A}) \neq \emptyset$ is a finite computation
- $X(\mathbb{A})^{Br} := \bigcap_{\alpha \in \text{Br}(X)} X(\mathbb{A})^\alpha$
- $\text{Br}(X) := H^2_{\text{ét}}(X, \mathbb{G}_m) \hookrightarrow \text{Br}(k(X))$
A little about $X(A)^{Br}$

- $X(A) \neq \emptyset$ is a finite computation

- $X(A)^{Br} := \bigcap_{\alpha \in \text{Br}(X)} X(A)\alpha$

- $\text{Br}(X) := H^2_{\text{et}}(X, \mathbb{G}_m) \hookrightarrow \text{Br}(k(X))$

- $\text{Br}_1(X) := \ker(\text{Br}(X) \to \text{Br}(\overline{X}))$
A little about $X(\mathbf{A})^{\text{Br}}$

- $X(\mathbf{A}) \neq \emptyset$ is a finite computation

- $X(\mathbf{A})^{\text{Br}} := \bigcap_{\alpha \in \text{Br}(X)} X(\mathbf{A})^\alpha$

- $\text{Br}(X) := H^2_{\text{et}}(X, \mathbb{G}_m) \hookrightarrow \text{Br}(k(X))$

- $\text{Br}_1(X) := \ker(\text{Br}(X) \rightarrow \text{Br}(\overline{X}))$

- $\text{Br}_1(X)/\text{Br}(\mathbb{Q}) \cong H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}))$ which is a finite group
A little about $X(\mathbf{A})^{Br}$

- $X(\mathbf{A}) \neq \emptyset$ is a finite computation
- $X(\mathbf{A})^{Br} := \bigcap_{\alpha \in \text{Br}(X)} X(\mathbf{A})^{\alpha}$
- $\text{Br}(X) := H^2_{\text{ét}}(X, \mathbb{G}_m) \hookrightarrow \text{Br}(k(X))$
- $\text{Br}_1(X) := \ker(\text{Br}(X) \to \text{Br}(\overline{X}))$
- $\text{Br}_1(X)/\text{Br}(\mathbb{Q}) \simeq H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}))$ which is a finite group
- For every $\alpha \in \text{Br}_1(X)$,

 $X(\mathbb{Q}) \subseteq X(\mathbf{A})^{Br} \subseteq X(\mathbf{A})^{Br_1} \subseteq X(\mathbf{A})^{\alpha}$.

Geometry of K3 surfaces/\mathbb{Q}
Geometry of K3 surfaces/\mathbb{Q}

- \kappa(X) = 0
Geometry of K3 surfaces/\mathbb{Q}

- \kappa(X) = 0
- X is simply connected
Geometry of K3 surfaces/\mathbb{Q}

- \kappa(X) = 0
- X is simply connected
- \exists 1 \leq \rho(X) \leq 20 and \(C_1 \ldots C_{\rho(X)} \) divisors (curves) on \(\overline{X} \) such that

\[
\text{Pic}(\overline{X}) \cong \text{NS}(\overline{X}) \cong \mathbb{Z}^{\rho(X)} \cong \langle C_1, \ldots, C_{\rho(X)} \rangle
\]
Theorem 1

Define $X_D: w^2 = x^6 + y^6 + z^6 + D(xyz)^2$. Then for a generic $D \in \mathbb{Q}$,

$$\text{Pic}(X_D) \cong \mathbb{Z}_{19}.$$

Otherwise, $\rho(X_D) = 20$.

Mckenzie West
K3 Arithmetic
January 6, 2017
Theorem 1 (Bouyer, Costa, Festi, Nicholls, W.)

Define \(X_D : w^2 = x^6 + y^6 + z^6 + D(xyz)^2 \). Then for a generic \(D \in \mathbb{Q} \),

\[
\text{Pic}(\overline{X}_D) \simeq \mathbb{Z}^{19} \quad (\text{i.e.,} \quad \rho(X_D) = 19).
\]

Otherwise, \(\rho(X_D) = 20 \).
Theorem 2 (Bouyer, Costa, Festi, Nicholls, W.)

For a generic D, $B_r^1(X, D) / B_r(Q) \cong (\mathbb{Z}/2\mathbb{Z})^3$.
Theorem 2 (Bouyer, Costa, Festi, Nicholls, W.)

For a generic D,

$$\text{Br}_1(X_D)/\text{Br}(\mathbb{Q}) \simeq (\mathbb{Z}/2\mathbb{Z})^3.$$
\(\rho(X_D) = 19 \)
\(\rho(X_D) = 19 \)

- \(\rho(X_D) \) is invariant under dominant maps of K3 surfaces
\[\rho(X_D) = 19 \]

- \(\rho(X_D) \) is invariant under dominant maps of K3 surfaces
- Such a map exists from \(X_D \) to \(\mathcal{E} \), where \(\mathcal{E} \) is the elliptic fibration

\[\mathcal{E} : \hat{y}^2 = \hat{x}^3 +Dt^2\hat{x}^2 + t^5(t + 1)^2 \]
\[\rho(X_D) = 19 \]

- \(\rho(X_D) \) is invariant under dominant maps of K3 surfaces
- Such a map exists from \(X_D \) to \(\mathcal{E} \), where \(\mathcal{E} \) is the elliptic fibration

\[\mathcal{E} : \hat{y}^2 = \hat{x}^3 + D t^2 \hat{x}^2 + t^5 (t + 1)^2 \]

- \(\rho(\mathcal{E}) = 19 \)
$\rho(X_D) = 19$

- $\rho(X_D)$ is invariant under dominant maps of K3 surfaces
- Such a map exists from X_D to \mathcal{E}, where \mathcal{E} is the elliptic fibration
 \[
 \mathcal{E} : \hat{y}^2 = \hat{x}^3 + D\hat{t}^2\hat{x}^2 + t^5(t + 1)^2
 \]
- $\rho(\mathcal{E}) = 19$ because \mathcal{E} has
 - two E_8 fibers, $t = 0$ and $t = \infty$
 - and one A_1 fiber, $t = -1$
The projection \(x:y:z:w \mapsto x:y:z \) from \(X_D \) to \(P^2 \) is a cover ramified along the sextic \(C \):
\[x^6 + y^6 + z^6 + D(xyz)^2. \]
Write down eight conics which intersect \(C \) tangentially at six points each. Let \(C_1, \ldots, C_8 \) be their preimages as divisors on \(X_D \).

Take \(G = \text{Aut}(X_D) \).

Define \(\Lambda := G \cdot \langle C_1, \ldots, C_8 \rangle \subseteq \text{Pic}(X_D). \)

Lemma 3 (Bouyer, Costa, Festi, Nicholls, W.)
The projection \([x : y : z : w] \mapsto [x : y : z]\) from \(X_D\) to \(\mathbb{P}^2\) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(xyz)^2\).
The projection $[x : y : z : w] \mapsto [x : y : z]$ from X_D to \mathbb{P}^2 is a cover ramified along the sextic $C : x^6 + y^6 + z^6 + D(xyz)^2$.

Write down eight conics which intersect C tangentially at six points each. Let C_1, \ldots, C_8 be their preimages as divisors on X_D.

Lemma 3 (Bouyer, Costa, Festi, Nicholls, W.)

$\Lambda = \text{Pic}(X_D)$.

Mckenzie West
K3 Arithmetic
January 6, 2017 8 / 11
The projection \([x : y : z : w] \mapsto [x : y : z]\) from \(X_D\) to \(\mathbb{P}^2\) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(xyz)^2\).

Write down eight conics which intersect \(C\) tangentially at six points each. Let \(C_1, \ldots, C_8\) be their preimages as divisors on \(X_D\).

Take \(G = \text{Aut}(X_D)\).
The projection \([x : y : z : w] \mapsto [x : y : z]\) from \(X_D\) to \(\mathbb{P}^2\) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(xyz)^2\).

Write down eight conics which intersect \(C\) tangentially at six points each. Let \(C_1, \ldots, C_8\) be their preimages as divisors on \(X_D\).

Take \(G = \text{Aut}(X_D)\).

Define \(\Lambda := G \cdot \langle C_1, \ldots, C_8 \rangle \subseteq \text{Pic}(\overline{X_D})\).
The projection $[x : y : z : w] \mapsto [x : y : z]$ from X_D to \mathbb{P}^2 is a cover ramified along the sextic $C : x^6 + y^6 + z^6 + D(xyz)^2$.

Write down eight conics which intersect C tangentially at six points each. Let C_1, \ldots, C_8 be their preimages as divisors on X_D.

Take $G = \text{Aut}(X_D)$.

Define $\Lambda := G \cdot \langle C_1, \ldots, C_8 \rangle \subseteq \text{Pic}(X_D)$.
The projection \([x : y : z : w] \mapsto [x : y : z]\) from \(X_D\) to \(\mathbb{P}^2\) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(xyz)^2\).

Write down eight conics which intersect \(C\) tangentially at six points each. Let \(C_1, \ldots, C_8\) be their preimages as divisors on \(X_D\).

Take \(G = \text{Aut}(X_D)\).

Define \(\Lambda := G \cdot \langle C_1, \ldots, C_8 \rangle \subseteq \text{Pic}(\overline{X}_D)\).

Lemma 3 (Bouyer, Costa, Festi, Nicholls, W.)

\[\Lambda = \text{Pic}(\overline{X}_D) \]
$H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X_D}))$

If K is the field of definition for $C_1,...,C_8$, then generically $[K:Q] = 96 = 3 \cdot 2^5$.

$\text{Gal}(K/Q) \cong D_4 \times C_2 \times S_3$.

$H^1(\text{Gal}(\overline{Q}/Q), \text{Pic}(X_D)) \cong H^1(\text{Gal}(K/Q), \text{Pic}(X_D \times \mathbb{Q}_K))$.

Write $\text{Pic}(X_D)$ and $\sigma \in \text{Gal}(K/Q)$ as matrices.

By MAGMA:

$\text{Br}^1(X_D)/\text{Br}(Q) \cong H^1(\text{Gal}(K/Q), \text{Pic}(X_D \times \mathbb{Q}_K) \cong (\mathbb{Z}/2\mathbb{Z})^3$.
\[H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}_D)) \]

- If \(K \) is the field of definition for \(C_1, \ldots, C_8 \), then generically

\[[K : \mathbb{Q}] = 96 = 3 \cdot 2^5. \]
$H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}_D))$

- If K is the field of definition for C_1, \ldots, C_8, then generically
 $$[K : \mathbb{Q}] = 96 = 3 \cdot 2^5.$$

- $\text{Gal}(K/\mathbb{Q}) \simeq D_4 \times C_2 \times S_3$
$H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X_D}))$

- If K is the field of definition for C_1, \ldots, C_8, then generically
 $$[K : \mathbb{Q}] = 96 = 3 \cdot 2^5.$$

- $\text{Gal}(K/\mathbb{Q}) \cong D_4 \times C_2 \times S_3$
- $H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X_D})) \cong H^1(\text{Gal}(K/\mathbb{Q}), \text{Pic}(X_D \times_{\mathbb{Q}} K))$
If K is the field of definition for C_1, \ldots, C_8, then generically

$$[K : \mathbb{Q}] = 96 = 3 \cdot 2^5.$$

- $\text{Gal}(K/\mathbb{Q}) \simeq D_4 \times C_2 \times S_3$
- $H^1(\text{Gal}(\mathbb{Q}/\mathbb{Q}), \text{Pic}(X_D)) \simeq H^1(\text{Gal}(K/\mathbb{Q}), \text{Pic}(X_D \times \mathbb{Q}_K))$
- Write $\text{Pic}(X_D)$ and $\sigma \in \text{Gal}(K/\mathbb{Q})$ as matrices.
$H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(X_D))$

- If K is the field of definition for C_1, \ldots, C_8, then generically
 \[[K : \mathbb{Q}] = 96 = 3 \cdot 2^5. \]

- $\text{Gal}(K/\mathbb{Q}) \cong D_4 \times C_2 \times S_3$

- $H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(X_D)) \cong H^1(\text{Gal}(K/\mathbb{Q}), \text{Pic}(X_D \times_{\mathbb{Q}} K))$

- Write $\text{Pic}(X_D)$ and $\sigma \in \text{Gal}(K/\mathbb{Q})$ as matrices.

- By MAGMA:
 \[\text{Br}_1(X_D)/\text{Br}(\mathbb{Q}) \cong H^1(\text{Gal}(K/\mathbb{Q}), \text{Pic}(X_D \times_{\mathbb{Q}} K)) \cong (\mathbb{Z}/2\mathbb{Z})^3. \]
Paths for Future Work
Proposition

There is an isomorphism

\[
\frac{(\text{Pic}(X_D)/m \text{Pic}(X_D))^{\text{Gal}(\overline{Q}/Q)}}{\text{Pic}(X_D)/2 \text{Pic}(X_D)} \rightarrow H^1(\text{Gal}(\overline{Q}/Q), \text{Pic}(X_D))[2]
\]

C \mapsto (\sigma \mapsto \frac{1}{2}(\sigma C - C))
Proposition

There is an isomorphism

\[
\frac{(\text{Pic}(\overline{X}_D)/m\text{Pic}(\overline{X}_D))^{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}}{\text{Pic}(X_D)/2\text{Pic}(X_D)} \rightarrow H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}_D))[2]
\]

\[C \mapsto (\sigma \mapsto \frac{1}{2}(\sigma C - C))\]

Proposition

Take \(L/\mathbb{Q}\) a cyclic extension, and \(f \in k(X)\). Then \((L/\mathbb{Q}, f) \in \text{Br}(X_D)\) if and only if \(\text{div}(f) = \text{Norm}_{L/\mathbb{Q}}(D)\) for a \(D \in \text{Div}(X_D \times \mathbb{Q} L)\).
Goals

- Write down elements of $\text{Br}_1(X_D)/\text{Br}(\mathbb{Q})$.
Goals

- Write down elements of $\text{Br}_1(X_D)/\text{Br}(\mathbb{Q})$.
- Compute $X_D(A)^{\text{Br}_1}$.
Goals

- Write down elements of $\text{Br}_1(X_D)/\text{Br}(\mathbb{Q})$.
- Compute $X_D(A)^{\text{Br}_1}$.
- Write down elements of $\text{Br}(X_D)/\text{Br}_1(X_D)$ and compute $X_D(A)^{\text{Br}}$.

$w_2 = Ax^6 + By^6 + Cz^6 + D(xyz)^2$.
Goals

- Write down elements of $\text{Br}_1(X_D)/\text{Br}(\mathbb{Q})$.
- Compute $X_D(A)^{\text{Br}_1}$.
- Write down elements of $\text{Br}(X_D)/\text{Br}_1(X_D)$ and compute $X_D(A)^{\text{Br}}$.
- Generalize these results to

$$X_{A,B,C,D} : w^2 = Ax^6 + By^6 + Cz^6 + D(xyz)^2.$$