The arithmetic of a family of degree-two K3 surfaces

Mckenzie West
Kalamazoo College, Mathematics Department

joint with Florian Bouyer, Edgar Costa, Dino Festi, and Christopher Nicholls

AMMCS 2017
Waterloo, CA

August 23, 2017
Rational Points

Rationale

Study the family of curves $X_{A,B,C,D}$ of the form $w^2 = Ax^6 + By^6 + Cz^6 + D(xyz)^2$ where $A, B, C, D \in \mathbb{Q}$.

Specifically we ask about $X_{\mathbb{Q}}$.

Mckenzie West

K3 Arithmetic
Rational Points

Goal

Study the family of curves $X_{A,B,C,D}$ of the form

$$w^2 = Ax^6 + By^6 + Cz^6 + D(\text{xyz})^2$$

where $A, B, C, D \in \mathbb{Q}$.
Rational Points

Goal

Study the family of curves $X_{A,B,C,D}$ of the form

$$w^2 = Ax^6 + By^6 + Cz^6 + D(xyz)^2$$

where $A, B, C, D \in \mathbb{Q}$. Specifically we ask about $X(\mathbb{Q})$.

Mckenzie West K3 Arithmetic
K3 surface
K3 surface

Why do we care about K3 surfaces?
K3 surface

Why do we care about K3 surfaces?

A simple answer: $\kappa(X) = 0$.
Why do we care about K3 surfaces?

A simple answer: $\kappa(X) = 0$.

Examples

- deg 2: $w^2 = f_6(x, y, z)$ in $\mathbb{P}(1, 1, 1, 3)$
Why do we care about K3 surfaces?

A simple answer: $\kappa(X) = 0$.

Examples

- deg 2: $w^2 = f_6(x, y, z)$ in $\mathbb{P}(1, 1, 1, 3)$
- deg 4: $f_4(x, y, z, w) = 0$ in \mathbb{P}^3
K3 surface

Why do we care about K3 surfaces?

A simple answer: $\kappa(X) = 0$.

Examples

- **deg 2**: $w^2 = f_6(x, y, z)$ in $\mathbb{P}(1, 1, 1, 3)$
- **deg 4**: $f_4(x, y, z, w) = 0$ in \mathbb{P}^3
- **deg 8**: $\{Q_1 \cap Q_2 \cap Q_3\}$ in \mathbb{P}^5
The Hasse principle

Recall

\[X(\mathbb{Q}) \subseteq X(\mathbb{A}) \]

Definition

We say \(X \) satisfies the Hasse principle if

\[X(\mathbb{Q}) = \emptyset \Rightarrow X(\mathbb{A}) = \emptyset \]

Good news: determining whether \(X(\mathbb{A}) = \emptyset \) is a finite computation.

Bad news: the Hasse principle fails often.

Good news: (Manin)

\[X(\mathbb{Q}) \subseteq X(\mathbb{A}) \]

Br \subseteq X(\mathbb{A})
The Hasse principle

Recall

\[X(\mathbb{Q}) \subseteq X(\mathbb{A}) \]
The Hasse principle

Recall

\[X(\mathbb{Q}) \subseteq X(\mathbb{A}) \]

Definition

We say \(X \) satisfies the Hasse principle if

\[X(\mathbb{Q}) = \emptyset \implies X(\mathbb{A}) = \emptyset \]
The Hasse principle

Recall

$X(\mathbb{Q}) \subseteq X(\mathbb{A})$

Definition

We say X satisfies the Hasse principle if

$$X(\mathbb{Q}) = \emptyset \implies X(\mathbb{A}) = \emptyset$$

Good news: determining whether $X(\mathbb{A}) = \emptyset$ is a finite computation.
The Hasse principle

Recall

\[X(\mathbb{Q}) \subseteq X(\mathbb{A}) \]

Definition

We say \(X \) satisfies the Hasse principle if

\[X(\mathbb{Q}) = \emptyset \implies X(\mathbb{A}) = \emptyset \]

Good news: determining whether \(X(\mathbb{A}) = \emptyset \) is a finite computation.

Bad news: the Hasse principle fails often.
The Hasse principle

Recall

\[X(\mathbb{Q}) \subseteq X(\mathbb{A}) \]

Definition

We say \(X \) satisfies the Hasse principle if

\[X(\mathbb{Q}) = \emptyset \implies X(\mathbb{A}) = \emptyset \]

Good news: determining whether \(X(\mathbb{A}) = \emptyset \) is a finite computation.
Bad news: the Hasse principle fails often.
Good news: (Manin)

\[X(\mathbb{Q}) \subseteq X(\mathbb{A})^{\text{Br}} \subseteq X(\mathbb{A}) \]
What can we say about $X(A)^{Br}$?
What can we say about $X(A)^{Br}$?

- Define $Br(X) := H^2_{\text{ét}}(X, \mathbb{G}_m)$.
What can we say about $X(A)^{Br}$?

- Define $Br(X) := H^2_{\text{ét}}(X, \mathbb{G}_m)$.
- Elements of $Br(X)$ can be realized as elements of $Br(k(X))$.

Mckenzie West
K3 Arithmetic
What can we say about $X(A)^{Br}$?

- Define $Br(X) := H^2_{\text{ét}}(X, \mathbb{G}_m)$.
- Elements of $Br(X)$ can be realized as elements of $Br(k(X))$.
- Using this, we can compute $X(A)^{Br} := \bigcap_{\alpha \in Br(X)} X(A)^{\alpha}$.

Mckenzie West
K3 Arithmetic
Filtration on $\text{Br}(X)$
Filtration on $\text{Br}(X)$

Filtration

$$\text{Br}_0(X) \subseteq \text{Br}_1(X) \subseteq \text{Br}(X)$$

where $\text{Br}_0(X) := \text{im}(\text{Br} \mathbb{Q} \to \text{Br} X)$ and
$\text{Br}_1(X) := \ker(\text{Br}(X) \to \text{Br}(\overline{X}))$
Filtration on $\text{Br}(X)$

\begin{align*}
\text{Br}_0(X) & \subseteq \text{Br}_1(X) \subseteq \text{Br}(X) \\
\text{where } \text{Br}_0(X) & := \text{im} (\text{Br} \mathbb{Q} \to \text{Br} X) \text{ and} \\
\text{Br}_1(X) & := \ker (\text{Br}(X) \to \text{Br}(\overline{X}))
\end{align*}

Naturally for every $\alpha \in \text{Br}_1(X),$

\[X(\mathbb{Q}) \subseteq X(\mathbb{A})^\text{Br} \subseteq X(\mathbb{A})^\text{Br}_1 \subseteq X(\mathbb{A})^\alpha. \]
Filtration on $\text{Br}(X)$

Filtration

\[
\text{Br}_0(X) \subseteq \text{Br}_1(X) \subseteq \text{Br}(X)
\]

where $\text{Br}_0(X) := \text{im}(\text{Br}(\mathbb{Q} \to \text{Br}(X))$ and $\text{Br}_1(X) := \ker(\text{Br}(X) \to \text{Br}(\overline{X}))$

Naturally for every $\alpha \in \text{Br}_1(X)$,

\[
X(\mathbb{Q}) \subseteq X(\mathbb{A})^{\text{Br}} \subseteq X(\mathbb{A})^{\text{Br}_1} \subseteq X(\mathbb{A})^\alpha.
\]

Moreover $\text{Br}_1(X)/\text{Br}_0(X) \simeq H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}))$.
Brauer groups and K3 surfaces (char 0)
Brauer groups and K3 surfaces (char 0)

Filtration

\[\text{Br}_0(X) \subseteq \text{Br}_1(X) \subseteq \text{Br}(X) \]

\[\text{Br}_1(X) / \text{Br}_0(X) \cong H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X})) \]

- \(\exists 1 \leq \rho(X) \leq 20 \) and \(C_1 \ldots C_{\rho(X)} \) divisors (curves) on \(\overline{X} \) such that

\[\text{Pic}(\overline{X}) \cong \text{NS}(\overline{X}) \cong \mathbb{Z}^{\rho(X)} \cong \langle C_1, \ldots, C_{\rho(X)} \rangle \]

Skorobogatov/Zarkin, 2008

\[\text{Br}(X) / \text{Br}_0(X) \text{ is finite} \]
Brauer groups and K3 surfaces (char 0)

Filtration

\[
\text{Br}_0(X) \subseteq \text{Br}_1(X) \subseteq \text{Br}(X)
\]

\[
\text{Br}_1(X)/\text{Br}_0(X) \cong H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}))
\]

- \(\exists 1 \leq \rho(X) \leq 20\) and \(C_1 \ldots C_{\rho(X)}\) divisors (curves) on \(\overline{X}\) such that
 \[
 \text{Pic}(\overline{X}) \cong \text{NS}(\overline{X}) \cong \mathbb{Z}^{\rho(X)} \cong \langle C_1, \ldots, C_{\rho(X)} \rangle
 \]

- \(\text{Br} \overline{X} \cong (\mathbb{Q}/\mathbb{Z})^{22-\rho(X)}\)
Brauer groups and K3 surfaces (char 0)

Filtration

\[\text{Br}_0(X) \subseteq \text{Br}_1(X) \subseteq \text{Br}(X) \]

\[\text{Br}_1(X)/\text{Br}_0(X) \cong H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X})) \]

- \(\exists 1 \leq \rho(X) \leq 20 \) and \(C_1 \ldots C_{\rho(X)} \) divisors (curves) on \(\overline{X} \) such that
 \[\text{Pic}(\overline{X}) \cong \text{NS}(\overline{X}) \cong \mathbb{Z}^{\rho(X)} \cong \langle C_1, \ldots, C_{\rho(X)} \rangle \]

- \(\text{Br} \overline{X} \cong (\mathbb{Q}/\mathbb{Z})^{22-\rho(X)} \)

- (Skorobogatov/Zarkin, 2008) \(\text{Br}(X)/\text{Br}_0(X) \) is finite
Our surfaces
Consider $X_{A,B,C,D}$ defined by

$$w^2 = Ax^6 + By^6 + CZ^6 + D(\text{xyz})^2$$

in $\mathbb{P}(1,1,1,3)$, where $A, B, C, D \in \mathbb{Q}$.
Our surfaces

Consider $X_{A,B,C,D}$ defined by

$$w^2 = Ax^6 + By^6 + Cz^6 + D(xyz)^2$$

in $\mathbb{P}(1,1,1,3)$, where $A, B, C, D \in \mathbb{Q}$.

Goal

Compute $\text{Pic} \overline{X}_{A,B,C,D}$.
Our surfaces

Consider $X_{A,B,C,D}$ defined by

$$w^2 = Ax^6 + By^6 + Cz^6 + D(\text{xyz})^2$$

in $\mathbb{P}(1,1,1,3)$, where $A, B, C, D \in \mathbb{Q}$.

Goal

Compute $\text{Pic}(\overline{X}_{A,B,C,D})$.

Initial step: Scale x, y, z over $\overline{\mathbb{Q}}$ to eliminate coefficients.
Our surfaces

Consider $X_{A,B,C,D}$ defined by

$$w^2 = Ax^6 + By^6 + Cz^6 + D(xyz)^2$$

in $\mathbb{P}(1, 1, 1, 3)$, where $A, B, C, D \in \mathbb{Q}$.

Goal

Compute $\text{Pic} \overline{X}_{A,B,C,D}$.

Initial step: Scale x, y, z over $\overline{\mathbb{Q}}$ to eliminate coefficients. Now we have X_D defined by:

$$w^2 = x^6 + y^6 + z^6 + D(xyz)^2,$$

with D in some finite extension of \mathbb{Q}.
Theorem 1

Theorem 1 (Bouyer, Costa, Festi, Nicholls, W.):

Define \(D_w = x^6 + y^6 + z^6 + D(xyz)^2 \). Then for a generic \(D \),

\[
\text{Pic}(X_D) \cong \mathbb{Z}_{19}, \quad \rho(X_D) = 19.
\]

Otherwise, \(\rho(X_D) = 20 \).
Theorem 1

Definition X_D: $w^2 = x^6 + y^6 + z^6 + D(xyz)^2$. Then for a generic D,

\[\text{Pic}(X_D) \cong \mathbb{Z}^{19} \] (i.e., $\rho(X_D) = 19$).

Otherwise, $\rho(X_D) = 20$.

Theorem 1 (Bouyer, Costa, Festi, Nicholls, W.)
Rank 19 K3 surfaces

Note

Any one-dimensional family of K3 surfaces of generic rank 19 is parameterized by a modular curve whose CM points correspond to the rank 20 specializations.
Rank 19 K3 surfaces

Note

Any one-dimensional family of K3 surfaces of generic rank 19 is parameterized by a modular curve whose CM points correspond to the rank 20 specializations.
Theorem 2

\[\text{Theorem 2 (Bouyer, Costa, Festi, Nicholls, W.)} \]

For a generic D, \(Br_1(X_D) / Br_0(X_D) \cong (\mathbb{Z} / 2\mathbb{Z})^3 \).
Theorem 2 (Bouyer, Costa, Festi, Nicholls, W.)

For a generic D,

$$\text{Br}_1(X_D)/\text{Br}_0(X_D) \cong (\mathbb{Z}/2\mathbb{Z})^3.$$
\[\rho(X_D) = 19 \]
\[\rho(X_D) = 19 \]

\(\rho(X_D) \) is invariant under dominant maps of K3 surfaces
\[\rho(X_D) = 19 \]

- \(\rho(X_D) \) is invariant under dominant maps of K3 surfaces
- Such a map exists from \(X_D \) to \(\mathcal{E} \), where \(\mathcal{E} \) is the elliptic fibration

\[\mathcal{E} : \hat{y}^2 = \hat{x}^3 + Dt^2\hat{x}^2 + t^5(t + 1)^2 \]
\[\rho(X_D) = 19 \]

- \(\rho(X_D) \) is invariant under dominant maps of K3 surfaces
- Such a map exists from \(X_D \) to \(\mathcal{E} \), where \(\mathcal{E} \) is the elliptic fibration
 \[\mathcal{E} : \hat{y}^2 = \hat{x}^3 + Dt^2\hat{x}^2 + t^5(t + 1)^2 \]
- \(\rho(\mathcal{E}) = 19 \)
\[\rho(X_D) = 19 \]

- \(\rho(X_D) \) is invariant under dominant maps of K3 surfaces
- Such a map exists from \(X_D \) to \(\mathcal{E} \), where \(\mathcal{E} \) is the elliptic fibration
 \[\mathcal{E} : \hat{y}^2 = \hat{x}^3 + Dt^2\hat{x}^2 + t^5(t + 1)^2 \]
- \(\rho(\mathcal{E}) = 19 \) because \(\mathcal{E} \) has
 - two \(E_8 \) fibers, \(t = 0 \) and \(t = \infty \)
 - and one \(A_1 \) fiber, \(t = -1 \)
The projection \(x:y:z:w \) from \(X_D \) to \(P^2 \) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(xyz)^2 \).

Write down eight conics which intersect \(C \) tangentially at six points each. Let \(C_1, \ldots, C_8 \) be their preimages as divisors on \(X_D \).

Take \(G = \text{Aut}(X_D) \).

Define \(\Lambda := G \cdot \langle C_1, \ldots, C_8 \rangle \subseteq \text{Pic}(X_D) \).

Lemma 3 (Bouyer, Costa, Festi, Nicholls, W.)

\[\Lambda = \text{Pic}(X_D) \]
The projection \([x : y : z : w] \mapsto [x : y : z]\) from \(X_D\) to \(\mathbb{P}^2\) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(xyz)^2\).
The projection $[x : y : z : w] \mapsto [x : y : z]$ from X_D to \mathbb{P}^2 is a cover ramified along the sextic $C : x^6 + y^6 + z^6 + D(xyz)^2$.

Write down eight conics which intersect C tangentially at six points each. Let C_1, \ldots, C_8 be their preimages as divisors on X_D.
Pic(\(\overline{X}_D\))

- The projection \([x : y : z : w] \mapsto [x : y : z]\) from \(X_D\) to \(\mathbb{P}^2\) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(\text{xyz})^2\).
- Write down eight conics which intersect \(C\) tangentially at six points each. Let \(C_1, \ldots, C_8\) be their preimages as divisors on \(X_D\).
- Take \(G = \text{Aut}(X_D)\).
Motivation

Our Results

Proof Methods

Future Work

\[\text{Pic}(X_D) \]

- The projection \([x : y : z : w] \mapsto [x : y : z]\) from \(X_D\) to \(\mathbb{P}^2\) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(xyz)^2\).
- Write down eight conics which intersect \(C\) tangentially at six points each. Let \(C_1, \ldots, C_8\) be their preimages as divisors on \(X_D\).
- Take \(G = \text{Aut}(X_D)\).
- Define \(\Lambda := G \cdot \langle C_1, \ldots, C_8 \rangle \subseteq \text{Pic}(X_D)\).
The projection $[x : y : z : w] \mapsto [x : y : z]$ from X_D to \mathbb{P}^2 is a cover ramified along the sextic $C : x^6 + y^6 + z^6 + D(xyz)^2$.

Write down eight conics which intersect C tangentially at six points each. Let C_1, \ldots, C_8 be their preimages as divisors on X_D.

Take $G = \text{Aut}(X_D)$.

Define $\Lambda := G \cdot \langle C_1, \ldots, C_8 \rangle \subseteq \text{Pic}(\overline{X}_D)$.

Pic(\overline{X}_D)
The projection \([x : y : z : w] \mapsto [x : y : z]\) from \(X_D\) to \(\mathbb{P}^2\) is a cover ramified along the sextic \(C : x^6 + y^6 + z^6 + D(xyz)^2\).

Write down eight conics which intersect \(C\) tangentially at six points each. Let \(C_1, \ldots, C_8\) be their preimages as divisors on \(X_D\).

Take \(G = \text{Aut}(X_D)\).

Define \(\Lambda := G \cdot \langle C_1, \ldots, C_8 \rangle \subseteq \text{Pic}(\overline{X}_D)\).

Lemma 3 (Bouyer, Costa, Festi, Nicholls, W.)

\[\Lambda = \text{Pic}(\overline{X}_D) \]
$H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X_D}))$
$H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}_D))$

- If K is the field of definition for C_1, \ldots, C_8, then generically

$$[K : \mathbb{Q}] = 96 = 3 \cdot 2^5.$$
If K is the field of definition for C_1, \ldots, C_8, then generically

$$[K : \mathbb{Q}] = 96 = 3 \cdot 2^5.$$

• $\text{Gal}(K/\mathbb{Q}) \cong D_4 \times C_2 \times S_3$
\[H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X_D})) \]

- If \(K \) is the field of definition for \(C_1, \ldots, C_8 \), then generically
 \[[K : \mathbb{Q}] = 96 = 3 \cdot 2^5. \]
- \(\text{Gal}(K/\mathbb{Q}) \cong D_4 \times C_2 \times S_3 \)
- \(H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X_D})) \cong H^1(\text{Gal}(K/\mathbb{Q}), \text{Pic}(X_D \times_Q K)) \)
$H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}({\overline{X}_D}))$

- If K is the field of definition for C_1, \ldots, C_8, then generically
 $$[K : \mathbb{Q}] = 96 = 3 \cdot 2^5.$$

- $\text{Gal}(K/\mathbb{Q}) \cong D_4 \times C_2 \times S_3$

- $H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}({\overline{X}_D})) \cong H^1(\text{Gal}(K/\mathbb{Q}), \text{Pic}(X_D \times_{\mathbb{Q}} K))$

- Write $\text{Pic}({\overline{X}_D})$ and $\sigma \in \text{Gal}(K/\mathbb{Q})$ as matrices.
\[H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}_D)) \]

- If \(K \) is the field of definition for \(C_1, \ldots, C_8 \), then generically \[[K : \mathbb{Q}] = 96 = 3 \cdot 2^5. \]

- \(\text{Gal}(K/\mathbb{Q}) \cong D_4 \times C_2 \times S_3 \)

- \(H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{Pic}(\overline{X}_D)) \cong H^1(\text{Gal}(K/\mathbb{Q}), \text{Pic}(X_D \times_K K)) \)

- Write \(\text{Pic}(\overline{X}_D) \) and \(\sigma \in \text{Gal}(K/\mathbb{Q}) \) as matrices.

- By MAGMA:

\[\text{Br}_1(X_D)/\text{Br}(\mathbb{Q}) \cong H^1(\text{Gal}(K/\mathbb{Q}), \text{Pic}(X_D \times_K K)) \cong (\mathbb{Z}/2\mathbb{Z})^3. \]
Goals

- Write down elements of $\text{Br}_1(X_D)/\text{Br}(\mathbb{Q})$.
Goals

- Write down elements of $\text{Br}_1(X_D)/\text{Br}(\mathbb{Q})$.
- Compute $X_D(A)^{\text{Br}_1}$.
Goals

- Write down elements of $\text{Br}_1(X_D)/\text{Br}(\mathbb{Q})$.
- Compute $X_D(A)^{\text{Br}_1}$.
- Write down elements of $\text{Br}(X_D)/\text{Br}_1(X_D)$ and compute $X_D(A)^{\text{Br}}$.

Generalize these results to X_A, B, C, D: $w^2 = Ax^6 + By^6 + Cz^6 + D(xyz)^2$.

Mckenzie West
K3 Arithmetic
Goals

- Write down elements of $\text{Br}_1(X_D)/\text{Br}(\mathbb{Q})$.
- Compute $X_D(A)^{\text{Br}_1}$.
- Write down elements of $\text{Br}(X_D)/\text{Br}_1(X_D)$ and compute $X_D(A)^{\text{Br}}$.
- Generalize these results to

\[X_{A,B,C,D} : w^2 = Ax^6 + By^6 + Cz^6 + D(xyz)^2. \]