10. The vectors are $\mathbf{V}_1 = -6.0\mathbf{i} + 8.0\mathbf{j}$, $\mathbf{V}_2 = 4.5\mathbf{i} - 5.0\mathbf{j}$.

(a) For the magnitude of \mathbf{V}_1 we have
$$||\mathbf{V}_1|| = (V_{1x}^2 + V_{1y}^2)^{1/2} = [(-6.0)^2 + (8.0)^2]^{1/2} = 10.0.$$ We find the direction from
tan $\theta_1 = V_{1y}/V_{1x} = (8.0)/(-6.0) = -1.33$.
From the signs of the components, we have $\theta_1 = 53^\circ$ above $-x$-axis.

(b) For the magnitude of \mathbf{V}_2 we have
$$||\mathbf{V}_2|| = (V_{2x}^2 + V_{2y}^2)^{1/2} = [(4.5)^2 + (-5.0)^2]^{1/2} = 6.7.$$ We find the direction from
tan $\theta_2 = V_{2y}/V_{2x} = (-5.0)/(4.5) = -1.11$.
From the signs of the components, we have $\theta_2 = 48^\circ$ below $+x$-axis.

(c) For the sum $\mathbf{V}_1 + \mathbf{V}_2$ we have
$$\mathbf{V}_1 + \mathbf{V}_2 = -1.5\mathbf{i} + 3.0\mathbf{j}.$$ For the magnitude of $\mathbf{V}_1 + \mathbf{V}_2$ we have
$$||\mathbf{V}_1 + \mathbf{V}_2|| = [(-1.5)^2 + (3.0)^2]^{1/2} = 3.4.$$ We find the direction from
tan $\theta_{1+2} = (3.0)/(-1.5) = -2.0$.
From the signs of the components, we have $\theta_{1+2} = 63^\circ$ above $-x$-axis.

(d) For the difference $\mathbf{V}_2 - \mathbf{V}_1$ we have
$$\mathbf{V}_2 - \mathbf{V}_1 = 10.5\mathbf{i} - 13.0\mathbf{j}.$$ For the magnitude of $\mathbf{V}_1 + \mathbf{V}_2$ we have
$$||\mathbf{V}_2 - \mathbf{V}_1|| = [(10.5)^2 + (-13.0)^2]^{1/2} = 16.7.$$ We find the direction from
tan $\theta_{2-1} = (-13.0)/(10.5) = -1.24$.
From the signs of the components, we have $\theta_{2-1} = 51^\circ$ below $+x$-axis.
11. The vectors are $\mathbf{V}_1 = 4\mathbf{i} - 8\mathbf{j}$, $\mathbf{V}_2 = \mathbf{i} + \mathbf{j}$, $\mathbf{V}_3 = -2\mathbf{i} + 4\mathbf{j}$.

(a) For the sum $\mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$ we have
 $\mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3 = 3\mathbf{i} - 3\mathbf{j}$.

 For the magnitude of $\mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$ we have
 $$|\mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3| = [(3)^2 + (-3)^2]^{1/2} = 4.2.$$

 We find the direction from
 $$\tan \theta_a = (-3)/(3) = -1.0.$$

 From the signs of the components, we have $\theta_a = 45^\circ$ below $+x$-axis.

(b) For $\mathbf{V}_1 - \mathbf{V}_2 + \mathbf{V}_3$ we have
 $\mathbf{V}_1 - \mathbf{V}_2 + \mathbf{V}_3 = \mathbf{i} - 5\mathbf{j}$.

 For the magnitude of $\mathbf{V}_1 - \mathbf{V}_2 + \mathbf{V}_3$ we have
 $$|\mathbf{V}_1 - \mathbf{V}_2 + \mathbf{V}_3| = [(1)^2 + (-5)^2]^{1/2} = 5.1.$$

 We find the direction from
 $$\tan \theta_b = (-5)/(1) = -5.0.$$

 From the signs of the components, we have $\theta_b = 79^\circ$ below $+x$-axis.
12. (a) For the components we have
\[R_x = A_x + B_x + C_x = 44.0 \cos 28.0^\circ - 26.5 \cos 56.0^\circ + 0 = 24.0; \]
\[R_y = A_y + B_y + C_y = 44.0 \sin 28.0^\circ + 26.5 \sin 56.0^\circ - 31.0 = 11.6. \]

(b) We find the resultant from
\[R = (R_x^2 + R_y^2)^{1/2} = [(24.0)^2 + (11.6)^2]^{1/2} = 26.7; \]
\[\tan \theta = R_y/R_x = (11.6)/(24.0) = 0.483, \] which gives \[\theta = 25.8^\circ \] above +x-axis.
18. We find the velocity and acceleration by differentiating:

\[\mathbf{r} = (7.60 \text{ m/s})\mathbf{i} + (8.85 \text{ m})\mathbf{j} - (1.00 \text{ m/s}^2)\mathbf{i}^2\mathbf{k}; \]

\[\mathbf{v} = \frac{d\mathbf{r}}{dt} = (7.60 \text{ m/s})\mathbf{i} - (2.00 \text{ m/s}^2)\mathbf{k}; \]

\[\mathbf{a} = \frac{d\mathbf{v}}{dt} = - (2.00 \text{ m/s}^2)\mathbf{k}. \]
21. (a) Because we do not know the displacement over the given time interval, the average velocity is unknown.

(b) The average acceleration is

\[\mathbf{a}_{av} = \frac{\Delta \mathbf{v}}{\Delta t} = \frac{[(27.5 \text{ m/s})\mathbf{i} - (-18.0 \text{ m/s})\mathbf{j}] / (8.00 \text{ s})}{8.00 \text{ s}} = (3.44 \text{ m/s}^2)\mathbf{i} + (2.25 \text{ m/s}^2)\mathbf{k}. \]

The magnitude is

\[|\mathbf{a}_{av}| = \sqrt{(3.44 \text{ m/s}^2)^2 + (2.25 \text{ m/s}^2)^2} = 4.11 \text{ m/s}^2. \]

We find the direction from

\[\tan \theta = \frac{2.25 \text{ m/s}^2}{3.44 \text{ m/s}^2} = 0.654, \]

which gives \(\theta = 33.2^\circ \) north of east.

(c) Because we do not know the distance traveled, the average speed is unknown.
22. (a) For the vertical component we have
\[a_y = (3.80 \text{ m/s}^2) \sin 30.0^\circ = 1.90 \text{ m/s}^2 \text{ down}. \]

(b) Because the elevation change is the vertical displacement, we find the time from the vertical motion, taking down as the positive direction:
\[y = v_{0y}t + \frac{1}{2}a_yt^2; \]
\[250 \text{ m} = 0 + \frac{1}{2}(1.90 \text{ m/s}^2)t^2, \]
which gives \(t = 16.2 \text{ s}. \)
31. We find the time of flight from the vertical displacement:

\[y = y_0 + v_0 t + \frac{1}{2} a_f t^2; \]

\[0 = 0 + (18.0 \text{ m/s})(\sin 32.0^\circ) t + \frac{1}{2} (-9.80 \text{ m/s}^2) t^2, \]

which gives \(t = 0, 1.95 \text{ s} \).

The ball is kicked at \(t = 0 \), so the football hits the ground \(1.95 \text{ s} \) later.
32. We choose a coordinate system with the origin at the release point, with x horizontal and y vertical, with the positive direction down. The horizontal motion will have constant velocity. We find the time required for the fall from
\[x = x_0 + v_0x t; \]
36.0 m = 0 + (22.2 m/s)t, which gives $t = 1.62$ s.
We find the height from the vertical motion:
\[y = y_0 + v_0y t + \frac{1}{2}a_y t^2; \]
\[h = 0 + 0 + \frac{1}{2}(9.80 \text{ m/s}^2)(1.62 \text{ s})^2 = 12.9 \text{ m}. \]
33. We choose a coordinate system with the origin at the release point, with \(x \) horizontal and \(y \) vertical, with the positive direction up. We find the time required for the fall from the vertical motion:
\[
y = y_0 + v_0 y + \frac{1}{2} a_y t^2;
\]
\[
-2.2 \ m = 0 + (14 \ \text{m/s})(\sin 40^\circ)t + \frac{1}{2}(-9.80 \ \text{m/s}^2)t^2.
\]
The solutions of this quadratic equation are \(t = -0.22 \ \text{s}, \ 2.06 \ \text{s} \). Because the shot is released at \(t = 0 \), the physical answer is \(2.06 \ \text{s} \). We find the horizontal distance from
\[
x = x_0 + v_0 x t;
\]
\[
x = 0 + (14 \ \text{m/s})(\cos 40^\circ)(2.06 \ \text{s}) = 22 \ \text{m}.
\]
38. (a) Because the athlete lands at the same level, we can use the expression for the horizontal range:

\[R = \frac{v_0^2 \sin(2\theta_0)}{g}; \]

\[7.80 \text{ m} = \frac{v_0^2 \sin(2(33.0^\circ))}{(9.80 \text{ m/s}^2)}, \]

which gives \(v_0 = 9.15 \text{ m/s}. \)

(b) For an increase of 5%, the initial speed becomes \(v'_0 = (1 + 0.05)v_0 = (1.05)v_0 \), and the new range is

\[R' = \frac{v'_0^2 \sin(2\theta_0)}{g} = (1.05)^2 \frac{v_0^2 \sin(2\theta_0)}{g} = 1.10R. \]

Thus the increase in the length of the jump is

\[R' - R = (1.10 - 1)R = 0.10(7.80 \text{ m}) = 0.78 \text{ m}. \]
40. (a) We choose a coordinate system with the origin at the base of the cliff, with x horizontal and y vertical, with the positive direction up. We find the time required for the fall from the vertical motion:

$$y = y_0 + v_{0y}t + \frac{1}{2}gt^2;$$

$$0 = 125 \text{ m} + (65.0 \text{ m/s})(\sin 37.0^\circ)t + \frac{1}{2}(-9.80 \text{ m/s}^2)t^2,$$

which gives $t = -2.45, 10.4 \text{ s}$. Because the projectile starts at $t = 0$, we have $t = 10.4 \text{ s}$.

(b) We find the range from the horizontal motion:

$$X = v_{0x}t = (65.0 \text{ m/s})(\cos 37.0^\circ)(10.4 \text{ s})$$

$$= 540 \text{ m}.$$

(c) For the velocity components, we have

$$v_x = v_{0x} = (65.0 \text{ m/s}) \cos 37.0^\circ = 51.9 \text{ m/s}.$$

$$v_y = v_{0y} + gt = (65.0 \text{ m/s}) \sin 37.0^\circ + (-9.80 \text{ m/s}^2)(10.4 \text{ s}) = -62.8 \text{ m/s}.$$

(d) When we combine these components, we get

$$v = (v_x^2 + v_y^2)^{1/2} = [(51.9 \text{ m/s})^2 + (-62.8 \text{ m/s})^2]^{1/2} = 81.5 \text{ m/s}.$$

(e) We find the angle from

$$\tan \theta = v_y/v_x = (62.8 \text{ m/s})/(51.9 \text{ m/s}) = 1.21,$$

which gives $\theta = 50.4^\circ$ below the horizontal.
46. (a) We choose a coordinate system with the origin at the jump point, with x horizontal and y vertical, with the positive direction up. The horizontal motion will have constant velocity.

We find the time required for the fall from

$$x = x_0 + v_0 t,$$

$$L = 0 + v_0 t,$$ which gives $t = L/v_0$.

For the vertical motion we have

$$y = y_0 + v_0 y t + \frac{1}{2}a_y t^2;$$

$$-h = 0 + 0 + \frac{1}{2}(-g) t^2;$$ so

$$h = \frac{1}{2}g\left(L/v_0\right)^2;$$

$$1.5 \text{ m} = \frac{1}{2}(9.80 \text{ m/s}^2)(20 \text{ m})^2/v_0^2,$$ which gives $v_0 = 36 \text{ m/s (130 km/h)}$.

(b) If the ramp makes an angle θ_0 with the horizontal, we have

$$x = x_0 + v_0 x t;$$

$$L = 0 + (v_0 \cos \theta_0) t,$$ which gives $t = L/v_0 \cos \theta_0$.

For the vertical motion we have

$$y = y_0 + v_0 y t + \frac{1}{2}a_y t^2;$$

$$-h = 0 + (v_0 \sin \theta_0) t + \frac{1}{2}(-g) t^2;$$ so

$$h = -(v_0 \sin \theta_0)(L/v_0 \cos \theta_0) + \frac{1}{2}g\left(L/v_0 \cos \theta_0\right)^2;$$

$$1.5 \text{ m} = -(20 \text{ m}) \tan 10^\circ + \frac{1}{2}(9.80 \text{ m/s}^2)(20 \text{ m})^2/v_0^2 \cos^2 10^\circ;$$ which gives $v_0 = 20 \text{ m/s (72 km/h)}$.
53. The centripetal acceleration of the Earth is

\[a_r = \frac{v^2}{r} = \frac{(2\pi r/T)^2}{r} = 4\pi^2 \frac{r}{T^2} \]

\[= 4\pi^2 (1.5 \times 10^{11} \text{ m})/(3.16 \times 10^7 \text{ s})^2 = 5.9 \times 10^{-3} \text{ m/s}^2 \text{ toward the Sun.} \]
To complete an orbit in time T, the speed of the shuttle must be $v = \frac{2\pi r}{T}$.

Thus the centripetal acceleration in terms of g is

$$a_R/g = \frac{v^2}{rg} = \frac{(2\pi r/T)^2}{rg} = \frac{4\pi^2 r^2}{gT^2}$$

$$= 4\pi^2(6.38 \times 10^6 \text{ m} + 0.40 \times 10^6 \text{ m})/(9.80 \text{ m/s}^2)[(90 \text{ min})(60 \text{ s/min})]^2,$$

which gives $a_R = 0.94g$.

82. We choose a coordinate system with the origin at home plate,
x horizontal and y up, as shown in the diagram.
The minimum speed of the ball is that which will have the
ball just clear the fence. The horizontal motion is
\[x = v_0t; \]
\[92 \text{ m} = v_0 \cos 40^\circ t, \] which gives \(v_0t = 120 \text{ m}. \)
The vertical motion is
\[y = y_0 + v_0y t + \frac{1}{2}a_y t^2; \]
\[12 \text{ m} = 1.0 \text{ m} + v_0 \sin 40^\circ t + \frac{1}{2}(-9.80 \text{ m/s}^2)t^2. \]
We can use the first equation to eliminate \(v_0t \) from the second and
solve for \(t \), which gives \(t = 3.67 \text{ s}. \)
When this value is used in the first equation, we get \(v_0 = 33 \text{ m/s}. \)
84. We use the coordinate system shown in the diagram.

We find the time for the ball to reach the net from the vertical motion:
\[y = y_0 + v_0y t + \frac{1}{2}a_y t^2; \]
\[0.90 \, \text{m} = 2.50 \, \text{m} + 0 + \frac{1}{2}(-9.80 \, \text{m/s}^2)t^2, \]
which gives \(t = 0.571 \, \text{s}. \)

We find the initial velocity from the horizontal motion:
\[x = v_0x t; \]
\[15.0 \, \text{m} = v_0(0.571 \, \text{s}), \]
which gives \(v_0 = 26.3 \, \text{m/s}. \)

We find the time for the ball to reach the ground from the vertical motion:
\[y = y_0 + v_0y t_2 + \frac{1}{2}a_y t_2^2; \]
\[0 = 2.50 \, \text{m} + 0 + \frac{1}{2}(-9.80 \, \text{m/s}^2)t_2^2, \]
which gives \(t_2 = 0.714 \, \text{s}. \)

We find where it lands from the horizontal motion:
\[x_2 = v_0x t_2 = (26.3 \, \text{m/s})(0.714 \, \text{s}) = 18.8 \, \text{m}. \]

Because this is \(18.8 \, \text{m} - 15.0 \, \text{m} = 3.8 \, \text{m beyond the net} , \)
which is less than 7.0 m, the serve is good.
90. We use the coordinate system shown in the diagram, with up positive. For the horizontal motion, we have
\[x = v_0 t; \]
\[L = (v_0 \cos \theta)t; \]
195 m = \((v_0 \cos \theta)(7.6 \text{ s})\), which gives \(v_0 \cos \theta = 25.7 \text{ m/s}\).
For the vertical motion, we have
\[y = y_0 + v_0 y t + \frac{1}{2} a_y t^2; \]
\[H = 0 + (v_0 \sin \theta) t + \frac{1}{2} (-g) t^2; \]
155 m = \((v_0 \sin \theta)(7.6 \text{ s}) + \frac{1}{2} (- 9.80 \text{ m/s}^2)(7.6 \text{ s})^2\), which gives \(v_0 \sin \theta = 57.6 \text{ m/s}\).
We can find the initial angle \(\theta\) by dividing the two results:
\[\tan \theta = \frac{(v_0 \sin \theta)}{(v_0 \cos \theta)} = \frac{(57.6 \text{ m/s})}{(25.7 \text{ m/s})} = 2.24, \text{ which gives } \theta = 66.0^\circ. \]
Now we can use one of the previous results to find the initial velocity:
\[v_0 = \frac{(25.7 \text{ m/s})}{\cos \theta} = \frac{(25.7 \text{ m/s})}{\cos 66.0^\circ} = 63 \text{ m/s}. \]
Thus the initial velocity is \(63 \text{ m/s}, 66^\circ \text{ above the horizontal}\).
94. The centripetal acceleration is
\[a_R = \frac{v^2}{r}, \quad \text{or} \quad r = \frac{v^2}{a_R}. \]
Thus \(r \) is minimal when \(a_R \) is maximal:
\[
r_{min} = \left[\frac{(700 \text{ km/h})/(3.6 \text{ ks/h})^2}{(6.0)(9.80 \text{ m/s}^2)}\right] = 6.4 \times 10^2 \text{ m} = 0.64 \text{ km}.
\]