Localized metabelian rho invariants as obstructions to torsion in the knot concordance group.

Chris Davis, Rice University

July 22, 2010
Goals

1. Introduce some ρ-invariants corresponding to localizations of the Alexander module of a knot.
2. Prove that they obstruct knots which are torsion in the algebraic concordance group from being torsion in the concordance group.
3. Prove computable bounds on the value of these invariants.
4. Do a computation to prove the theorem about twist knots which is on the next slide.
5. State a theorem regarding these invariants and iterated infection.
An application: Twist Knots

Theorem (D.)

No nontrivial linear combination of the twist knots, $T_7, T_{13}, T_{21} \ldots T_{x^2+x-+} \ (x \geq 2)$, is topologically slice. These knots are each of algebraic order 2.

![Diagram of T_n: the n-twist knot.](image_url)
Previous related results

Theorem (A. Tamulis, 2000)

No nontrivial combination of the twist knots T_n with $n \geq 3$ and $4n + 1$ prime is topologically slice. Each of these twist knots is algebraically of order 2.

Theorem (C. Livingston, 2001)

Let p_i be an enumeration of the primes congruent to 3 mod 4. Let $n_i = p_{2i-1}p_{2i} - 1$. No nontrivial linear combination of the knots T_{n_i} is slice. Each of these twist knots is algebraically of order 4.

Theorem (S. Kim, 2005)

No nontrivial linear combination of the twist knots, except for the 0 twist knot (unknot), the 1 twist knot (figure eight) and the 2 twist knot (stevedore) is ribbon.
Theorem

For a sufficiently nice slice knot, R, and a sufficiently nice infecting curve, η, the set resulting from iterated infection of R along η by each of $T_7, T_{21}, \ldots, T_{x^2+x+1}$ is linearly independent in the concordance group.
Twist knots and infection

Theorem

For a sufficiently nice slice knot, R, and a sufficiently nice infecting curve, η, the set resulting from iterated infection of R along η by each of $T_7, T_{21}, \ldots, T_{x^2+x+1}$ is linearly independent in the concordance group.

Example of niceness: any slice knot with Alexander module of the form $\mathbb{Q}[t^{\pm 1}]$ with $p(t)$ prime and symmetric and η a generator of the Alexander module.
Twist knots and infection

Theorem

For a sufficiently nice slice knot, R, and a sufficiently nice infecting curve, η, the set resulting from iterated infection of R along η by each of $T_7, T_{21}, \ldots, T_{x^2+x+1}$ is linearly independent in the concordance group.

Example of niceness: any slice knot with Alexander module of the form $\frac{\mathbb{Q}[t^{\pm 1}]}{p(t)^2}$ with $p(t)$ prime and symmetric and η a generator of the Alexander module.

$\rho^0(T_{x^2+x+1}) = 0$
Invariants of interest: ρ^0

For L an n component link with zero linking numbers, $M(L)$ denotes zero surgery along L.

Let $\phi: \pi_1(M(L)) \to \pi_1(M(L))$ be the Abelianization map.

Definition $\rho^0(L) := \rho(M(L), \phi)$

For a knot it is the integral of the Tristram-Levine Signature. (Cochran-Orr-Teichner '04)

For links it is computable: In a nice enough case a computer can be taught how to do it. (More on this later)
Invariants of interest: ρ^0

For L an n component link with zero linking numbers, $M(L)$ denotes zero surgery along L. Let $\phi : \pi_1(M(L)) \to \frac{\pi_1(M(L))}{\pi_1(M(L))(1)} = \mathbb{Z}^n$ be the Abelianization map.
Invariants of interest: ρ^0

For L an n component link with zero linking numbers, $M(L)$ denotes zero surgery along L. Let $\phi : \pi_1(M(L)) \to \frac{\pi_1(M(L))}{\pi_1(M(L))^{(1)}} = \mathbb{Z}^n$ be the Abelianization map.

Definition

\[\rho^0(L) := \rho(M(L), \phi) \]
Invariants of interest: ρ^0

For L an n component link with zero linking numbers, $M(L)$ denotes zero surgery along L. Let $\phi : \pi_1(M(L)) \to \frac{\pi_1(M(L))}{\pi_1(M(L))^{(1)}} = \mathbb{Z}^n$ be the Abelianization map.

Definition

$\rho^0(L) := \rho(M(L), \phi)$

- For a knot it is the integral of the Tristram-Levine Signature. (Cochran-Orr-Teichner ’04)
Invariants of interest: ρ^0

For L an n component link with zero linking numbers, $M(L)$ denotes zero surgery along L. Let $\phi: \pi_1(M(L)) \to \frac{\pi_1(M(L))}{\pi_1(M(L))^{(1)}} = \mathbb{Z}^n$ be the Abelianization map.

Definition

$\rho^0(L) := \rho(M(L), \phi)$

- For a knot it is the integral of the Tristram-Levine Signature. (Cochran-Orr-Teichner ’04)
- For links it is computable: In a nice enough case a computer can be taught how to do it. (More on this later)
Invariants of interest: ρ^1

For K a knot, let $\phi^1 : \pi_1(M(K)) \to \frac{\pi_1(M(K))}{\pi_1(M(K))^{(2)}}$ be the quotient map.
Invariants of interest: ρ^1

For K a knot, let $\phi^1 : \pi_1(M(K)) \to \frac{\pi_1(M(K))}{\pi_1(M(K))^{(2)}}$ be the quotient map.

Definition

$\rho^1(K) := \rho(M(K), \phi^1)$
Invariants of interest: ρ^1

For K a knot, let $\phi^1 : \pi_1(M(K)) \to \frac{\pi_1(M(K))}{\pi_1(M(K))(2)}$ be the quotient map.

Definition

$$\rho^1(K) := \rho(M(K), \phi^1)$$

- Considered by Cochran-Harvey-Leidy ’08 together with quotients corresponding to isotropy of the Blanchfield form as a slice obstruction.
Invariants of interest: ρ^1

For K a knot, let $\phi^1 : \pi_1(M(K)) \rightarrow \frac{\pi_1(M(K))}{\pi_1(M(K))^{(2)}}$ be the quotient map.

Definition

$\rho^1(K) := \rho(M(K), \phi^1)$

- Considered by Cochran-Harvey-Leidy '08 together with quotients corresponding to isotropy of the Blanchfield form as a slice obstruction.
- Hard to compute. There is no known procedure.
Invariants of interest: ρ_p^1
Invariants of interest: ρ_p^1

Let $p(t)$ be a polynomial.
Invariants of interest: ρ_1^p

Let $p(t)$ be a polynomial.

$$R_p := \left\{ \frac{f}{g} \in \mathbb{Q}(t) : (g, p) = 1 \right\}$$

is the localization of $\mathbb{Q}[t^{\pm 1}]$ at p.
Invariants of interest: ρ_p^1

Let $p(t)$ be a polynomial.

$$R_p := \left\{ \frac{f}{g} \in \mathbb{Q}(t) : (g, p) = 1 \right\}$$ is the localization of $\mathbb{Q}[t^{\pm 1}]$ at p.

Let $A_0^p(K) = A_0(K) \otimes R_p$ be the localized Alexander module of K.

Chris Davis, Rice University

Localized metabelian rho invariants as obstructions to torsion in the knot concordance group.

July 22, 2010
Invariants of interest: ρ_p^1

Let $p(t)$ be a polynomial.

$$R_p := \left\{ \frac{f}{g} \in \mathbb{Q}(t) : (g, p) = 1 \right\}$$ is the localization of $\mathbb{Q}[t^{\pm 1}]$ at p.

Let $A_0^p(K) = A_0(K) \otimes R_p$ be the localized Alexander module of K.

Let $\pi_1(M(K))^{(2)}_{p(t)}$ be the kernel of the composition

$$\pi_1(M(K))^{(1)} \rightarrow \frac{\pi_1(M(K))^{(1)}}{\pi_1(M(K))^{(2)}} \hookrightarrow A_0(K) \overset{\text{Id} \otimes 1}{\longrightarrow} A_0^p(K).$$
Invariants of interest: ρ_p^1

Let $p(t)$ be a polynomial.

$$R_p := \left\{ \frac{f}{g} \in \mathbb{Q}(t) : (g, p) = 1 \right\}$$ is the localization of $\mathbb{Q}[t^{\pm 1}]$ at p.

Let $A_0^p(K) = A_0(K) \otimes R_p$ be the localized Alexander module of K.

Let $\pi_1(M(K))^{(2)}_{p(t)}$ be the kernel of the composition

$$\pi_1(M(K))^{(1)} \rightarrow \frac{\pi_1(M(K))^{(1)}}{\pi_1(M(K))^{(2)}} \hookrightarrow A_0(K) \xrightarrow{\text{Id} \otimes 1} A_0^p(K).$$

Let $\phi_p^1 : \pi_1(M(K)) \rightarrow \frac{\pi_1(M(K))}{\pi_1(M(K))^{(2)}}$ be the quotient map.
Invariants of interest: ρ^1_p

Let $p(t)$ be a polynomial.

$$R_p := \left\{ \frac{f}{g} \in \mathbb{Q}(t) : (g, p) = 1 \right\}$$ is the localization of $\mathbb{Q}[t^{\pm 1}]$ at p.

Let $A_0^p(K) = A_0(K) \otimes R_p$ be the localized Alexander module of K.

Let $\pi_1(M(K))^{(2)}_{p(t)}$ be the kernel of the composition

$$\pi_1(M(K))^{(1)} \rightarrow \frac{\pi_1(M(K))^{(1)}}{\pi_1(M(K))^{(2)}} \hookrightarrow A_0(K) \rightarrow A_0^p(K).$$

Let $\phi^1_p : \pi_1(M(K)) \rightarrow \frac{\pi_1(M(K))}{\pi_1(M(K))_{p(t)^{(2)}}}$ be the quotient map.

Definition

$$\rho^1_{p(t)}(K) := \rho(M(K), \phi^1_p)$$
A pair of examples. 1: localize away from the Alexander polynomial

Let Δ be the Alexander polynomial of K.

Suppose $(p, \Delta) = 1$. Then $\frac{1}{\Delta} \in R_p$. Δ annihilates A_0, so $A_0 \otimes R_p = A_0^p$ vanishes.

$\pi_1(M(K))_{p(t)}^{(2)}$ is the kernel of the composition

$$\pi_1(M(K))^{(1)} \to \frac{\pi_1(M(K))^{(1)}}{\pi_1(M(K))^{(2)}} \hookrightarrow A_0(K) \to A_0^p(K) = 0.$$

$\pi_1(M(K))_{p(t)}^{(2)} = \pi_1(M(K))^{(1)}$, so $\rho_1^p(K) = \rho_0^0(K)$.
A pair of examples. 2: localize at the Alexander polynomial

Suppose $p = \Delta$. Then $A_0(K) \to A_0(K) \otimes R_p$ is injective.

$\pi_1(M(K))^{(2)}_{p(t)}$ is the kernel of the composition

$$
\pi_1(M(K))^{(1)} \to \frac{\pi_1(M(K))^{(1)}}{\pi_1(M(K))^{(2)}} \hookrightarrow A_0(K) \hookrightarrow A_0^p(K).
$$

$\pi_1(M(K))^{(2)}_{p(t)} = \pi_1(M(K))^{(2)}$, so $\rho_1^p(K) = \rho_1^1(K)$
Interactions between ρ_p^1 and the Alexander polynomial

Proposition (D.)

Let Δ be the Alexander polynomial of a knot, K.

- For any p which is relatively prime to Δ, $\rho_p^1(K) = \rho^0(K)$.
- $\rho_\Delta^1(K) = \rho^1(K)$.

Chris Davis, Rice University

Localized metabelian rho invariants as obstructions to torsion in the knot concordance group.

July 22, 2010 11 / 37
\[\rho_p^1(J \# K) = \rho_p^1(J) + \rho_p^1(K). \]

Proposition (D.)

For \(\eta \) an unknot representing an element of the localized Alexander module of \(J \),

\[\rho_p^1(J_\eta(K)) = \begin{cases}
\rho_p^1(J) & \text{if } \eta = 0 \text{ in } A_0^p(J) \\
\rho_p^1(J) + \rho^0(K) & \text{if } \eta \neq 0 \text{ in } A_0^p(J)
\end{cases} \]
\(\rho_p^1 \) under infection and connected sums

Proposition (D.)

\[
\rho_p^1(J \# K) = \rho_p^1(J) + \rho_p^1(K).
\]

Proposition (D.)

For \(\eta \) an unknot representing an element of the localized Alexander module of \(J \),

\[
\rho_p^1(J_{\eta}(K)) = \begin{cases}
\rho_p^1(J) & \text{if } \eta = 0 \text{ in } A_0^p(J) \\
\rho_p^1(J) + \rho^0(K) & \text{if } \eta \neq 0 \text{ in } A_0^p(J)
\end{cases}
\]

From the second proposition I get the following discouraging example:
A pair of slice knots with differing ρ^1 invariants

Consider the pair of slice knots below. $\rho^1(R_\eta(A)) = \rho^1(R) + \rho^0(A)$. In particular $\rho^1(R)$ and $\rho^1(R_\eta(A))$ cannot both be zero. ρ^1 is not well defined on the concordance group.

![Diagram of slice knots](image)

Figure: A pair of slice knots with differing ρ^1.
A pair of slice knots with differing ρ^1 invariants

Consider the pair of slice knots below. $\rho^1(R_\eta(A)) = \rho^1(R) + \rho^0(A)$. In particular $\rho^1(R)$ and $\rho^1(R_\eta(A))$ cannot both be zero. ρ^1 is not well defined on the concordance group.

Despite this fact, I will provide in the next few slides a setting in which these invariants provide useful concordance information.

Figure: A pair of slice knots with differing ρ^1.
Blanchfield forms and isotropy

$\mathbb{Q}[t^{\pm 1}]$, and thus R_p when p is symmetric, have an involution given by

$$\overline{q}(t) = q(t^{-1})$$
Blanchfield forms and isotropy

\(\mathbb{Q}[t^{\pm 1}] \), and thus \(R_p \) when \(p \) is symmetric, have an involution given by \(\overline{q}(t) = q(t^{-1}) \).

With respect to this involution, the localized Alexander module has a hermitian form

\[
Bl^p : A_p^0(K) \times A_p^0(K) \to \frac{\mathbb{Q}(t)}{R_p}.
\]

given by extending the Blanchfield form on \(A_0(K) \)
Blanchfield forms and isotropy

\[\mathbb{Q}[t^\pm 1], \] and thus \(R_p \) when \(p \) is symmetric, have an involution given by
\[\bar{q}(t) = q(t^{-1}) \]
With respect to this involution, the localized Alexander module has a hermitian form

\[BL^p : A_0^p(K) \times A_0^p(K) \rightarrow \frac{\mathbb{Q}(t)}{R_p}. \]

given by extending the Blanchfield form on \(A_0(K) \)

Definition

\(P \subseteq A_0^p(K) \) is called isotropic if \(BL^p(a, b) = 0 \) for all \(a, b \in P \).
Blanchfield forms and isotropy

\[\mathbb{Q}[t^{\pm 1}], \text{ and thus } R_p \text{ when } p \text{ is symmetric, have an involution given by } \overline{q}(t) = q(t^{-1}) \]

With respect to this involution, the localized Alexander module has a hermitian form

\[BL^p : A^p_0(K) \times A^p_0(K) \to \frac{\mathbb{Q}(t)}{R_p}. \]

given by extending the Blanchfield form on \(A_0(K) \)

Definition

\(P \subseteq A^p_0(K) \) is called **isotropic** if \(BL^p(a, b) = 0 \) for all \(a, b \in P \)

Definition

\(K \) is called **\(p \)-anisotropic** if there is no nontrivial isotropic submodule of \(A^p_0(K) \).
Exploration of anisotropy.

If p is a symmetric prime which divides Δ with multiplicity 1,
Exploration of anisotropy.

If p is a symmetric prime which divides divides Δ with multiplicity 1, then $A_p^0(K)$ is cyclic: $A_p^0(K) = \frac{R_p}{(p)}$.

Let α generate $A_p^0(K)$. The Blanchfield form is given by $Bl_p(q \alpha, r \alpha) = qra^p$ with $(a, p) = 1$. If $Bl_p(q \alpha, r \alpha) = 0$ then p divides q or r. By symmetry of p, $p | q$ if and only if $p | q$. Thus $Bl_p(a, b) = 0$ if and only in a or b is zero in $A_p^0(K)$. In particular there are no nontrivial isotropic submodules. This proves the following in the case that p is prime.

Proposition If the Alexander polynomial of a knot is squarefree, then the knot is p-anisotropic for every symmetric polynomial, p.

Chris Davis, Rice University ()
Exploration of anisotropy.

If p is a symmetric prime which divides divides Δ with multiplicity 1, then $A^p_0(K)$ is cyclic: $A^p_0(K) = \frac{R_p}{(p)}$. Let α generate $A^p_0(K)$. The Blanchfield form is given by $\text{Bl}_p(q\alpha, r\alpha) = qra_p$ with $(a, p) = 1$. If $\text{Bl}_p(q\alpha, r\alpha) = 0$ then p divides q or r. By symmetry of p, $p | q$ if and only if $p | q$. Thus $\text{Bl}_p(a, b) = 0$ if and only if a or b is zero in $A^p_0(K)$. In particular there are no nontrivial isotropic submodules. This proves the following in the case that p is prime.

Proposition
If the Alexander polynomial of a knot is squarefree, then the knot is p-anisotropic for every symmetric polynomial, p.

Chris Davis, Rice University ()
Localized metabelian rho invariants as obstructions to torsion in the knot concordance group.
July 22, 2010 15 / 37
Exploration of anisotropy.

If p is a symmetric prime which divides Δ with multiplicity 1, then $A_0^p(K)$ is cyclic: $A_0^p(K) = \frac{R_p}{(p)}$. Let α generate $A_0^p(K)$.

The Blanchfield form is given by $Bl^p(q\alpha, r\alpha) = \frac{qra}{p}$ with $(a, p) = 1$.

Thus $Bl^p(a, b) = 0$ if and only if a or b is zero in $A_0^p(K)$. In particular there are no nontrivial isotropic submodules. This proves the following in the case that p is prime.

Proposition

If the Alexander polynomial of a knot is squarefree, then the knot is p-anisotropic for every symmetric polynomial, p.

Chris Davis, Rice University () Localized metabelian rho invariants as obstructions to torsion in the knot concordance group. July 22, 2010 15 / 37
Exploration of anisotropy.

If p is a symmetric prime which divides Δ with multiplicity 1, then $A^p_0(K)$ is cyclic: $A^p_0(K) = \frac{R_p}{(p)}$. Let α generate $A^p_0(K)$.

The Blanchfield form is given by $Bl^p(q\alpha, r\alpha) = \frac{\overline{q}ra}{p}$ with $(a, p) = 1$. If $Bl^p(q\alpha, r\alpha) = 0$ then p divides \overline{q} or r. By symmetry of p, $p|\overline{q}$ if and only if $p|q$.
Exploration of anisotropy.

If \(p \) is a symmetric prime which divides \(\Delta \) with multiplicity 1, then \(A_0^p(K) \) is cyclic:
\[
A_0^p(K) = \frac{R_p}{(p)}.
\]
Let \(\alpha \) generate \(A_0^p(K) \).

The Blanchfield form is given by
\[
Bl^p(q\alpha, r\alpha) = \frac{\bar{q}ra}{p}
\]
with \((a, p) = 1\). If
\[
Bl^p(q\alpha, r\alpha) = 0
\]
then \(p \) divides \(\bar{q} \) or \(r \). By symmetry of \(p \), \(p | \bar{q} \) if and only if \(p | q \).
Thus \(Bl^p(a, b) = 0 \) if and only if \(a \) or \(b \) is zero in \(A_0^p(K) \). In particular there are no nontrivial isotropic submodules.
Exploration of anisotropy.

If \(p \) is a symmetric prime which divides \(\Delta \) with multiplicity 1, then \(A_0^p(K) \) is cyclic:
\[
A_0^p(K) = \frac{R_p}{(p)}.
\]
Let \(\alpha \) generate \(A_0^p(K) \).

The Blanchfield form is given by
\[
Bl^p(q\alpha, r\alpha) = \frac{\overline{q}ra}{p}
\]
with \((a, p) = 1\). If
\[
Bl^p(q\alpha, r\alpha) = 0
\]
then \(p \) divides \(\overline{q} \) or \(r \). By symmetry of \(p \), \(p | \overline{q} \) if and only if \(p | q \).

Thus \(Bl^p(a, b) = 0 \) if and only in \(a \) or \(b \) is zero in \(A_0^p(K) \). In particular there are no nontrivial isotropic submodules.

This proves the following in the case that \(p \) is prime.

Proposition

If the Alexander polynomial of a knot is squarefree, then the knot is \(p \)-anisotropic for every symmetric polynomial, \(p \).
First big theorem: ρ_p^1 as an obstruction to linear dependence in C

Theorem (D.)

Given a symmetric polynomial $p(t)$ and (not necessarily distinct) p-anisotropic knots K_1, \ldots, K_n, if $K_1 \# \ldots \# K_n$ is slice, then

$$\sum_{i=1}^n \rho_{p(t)}^1(K_i) = 0$$
First big theorem: \(\rho_p^1 \) as an obstruction to linear dependence in \(\mathcal{C} \)

Theorem (D.)

*Given a symmetric polynomial \(p(t) \) and (not necessarily distinct) \(p \)-anisotropic knots \(K_1, \ldots, K_n \), if \(K_1 \# \ldots \# K_n \) is slice, then

\[
\sum_{i=1}^{n} \rho_{p(t)}^1(K_i) = 0
\]

Corollary (D.)

*If \(K \) is of finite concordance order and is \(p \)-anisotropic, then \(\rho_p^1(K) = 0 \)
First big theorem: ρ^1_p as an obstruction to linear dependence in \mathcal{C}

Theorem (D.)

Given a symmetric polynomial $p(t)$ and (not necessarily distinct) p-anisotropic knots K_1, \ldots, K_n, if $K_1 \# \ldots \# K_n$ is slice, then

$$\sum_{i=1}^{n} \rho^1_{p(t)}(K_i) = 0$$

Corollary (D.)

If K is of finite concordance order and is p-anisotropic, then $\rho^1_p(K) = 0$

Corollary (D.)

If K_1, \ldots, K_n are of finite algebraic order and have coprime, squarefree Alexander polynomials, then if $\rho^1(K_i)$ is nonzero for each i, $\{K_1, \ldots, K_n\}$ is linearly independent in \mathcal{C}.
Proof of second corollary

Let p_j the Alexander polynomial of K_j.
Proof of second corollary

Let p_j the the Alexander polynomial of K_j. If $\# a_i K_i$ is slice, then

$$0 = \sum_{i=1}^{n} a_i \rho^1_{p_j}(K_i)$$

for each j. Since these knots have coprime Alexander polynomials, $\rho^1_{p_j}(K_i) = \rho^0(K_i)$ if $j \neq i$ and $\rho^1_{p_j}(K_j) \neq 0$. Since each of the knots are of finite algebraic order, $\rho^0(K_i) = 0$. Thus, $0 = a_j \rho^1_{p_j}(K_j)$. Since $\rho^1_{p_j}(K_j) \neq 0$, $a_j = 0$. No nontrivial combinations of the knots K_i is slice and the set is linearly independent.
Proof of second corollary

Let p_j the the Alexander polynomial of K_j. If $\#a_i K_i$ is slice, then

$$0 = \sum_{i=1}^{n} a_i \rho^1_{p_j}(K_i)$$

for each j. Since these knots have coprime Alexander polynomials, $\rho^1_{p_j}(K_i) = \rho^0(K_i)$ if $j \neq i$ and $\rho^1_{p_j}(K_j) = \rho^1(K_j) \neq 0$. Since each of the knots are of finite algebraic order, $\rho^0(K_i) = 0$. Thus,

$$0 = a_j \rho^1(K_j).$$

Since $\rho^1(K_j) \neq 0$, $a_j = 0$. No nontrivial combinations of the knots K_i is slice and the set is linearly independent.
Proof of second corollary

Let p_j the the Alexander polynomial of K_j. If $\#a_iK_i$ is slice, then

$$0 = \sum_{i=1}^{n} a_i \rho_{p_j}^1(K_i)$$

for each j. Since these knots have coprime Alexander polynomials, $\rho_{p_j}^1(K_i) = \rho^0(K_i)$ if $j \neq i$ and $\rho_{p_j}^1(K_j) = \rho^1(K_j) \neq 0$. Since each of the knots are of finite algebraic order, $\rho^0(K_i) = 0$.

Chris Davis, Rice University () Localized metabelian rho invariants as obstructions to torsion in the knot concordance group. July 22, 2010 17 / 37
Proof of second corollary

Let p_j the the Alexander polynomial of K_j. If $\#a_iK_i$ is slice, then

$$0 = \sum_{i=1}^{n} a_i \rho^1_{p_j}(K_i)$$

for each j. Since these knots have coprime Alexander polynomials, $\rho^1_{p_j}(K_i) = \rho^0(K_i)$ if $j \neq i$ and $\rho^1_{p_j}(K_j) = \rho^1(K_j) \neq 0$. Since each of the knots are of finite algebraic order, $\rho^0(K_i) = 0$. Thus,

$$0 = a_j \rho^1(K_j).$$

Since $\rho^1(K_j) \neq 0$, $a_j = 0$.
Proof of second corollary

Let p_j the Alexander polynomial of K_j. If $\#a_iK_i$ is slice, then

$$0 = \sum_{i=1}^{n} a_i \rho^1_{p_j}(K_i)$$

for each j. Since these knots have coprime Alexander polynomials, $\rho^1_{p_j}(K_i) = \rho^0(K_i)$ if $j \neq i$ and $\rho^1_{p_j}(K_j) = \rho^1(K_j) \neq 0$. Since each of the knots are of finite algebraic order, $\rho^0(K_i) = 0$. Thus,

$$0 = a_j \rho^1(K_j)$$

Since $\rho^1(K_j) \neq 0$, $a_j = 0$.

No nontrivial combinations of the knots K_i is slice and the set is linearly independent.
Comparison of second corollary to polynomial splitting theorems

The second corollary can be compared to the polynomial splitting theorems for Casson-Gordon invariants (S. Kim, 2003) and for ρ-invariants corresponding to isotropy in the Alexander module (S. Kim-T. Kim, 2007). The idea of the comparison: Each theorem says that if some knots with coprime Alexander polynomials have non-vanishing obstructions then their connected sum has non-vanishing obstructions.
Example: a linearly independent family of knots in \mathcal{C} via infection.

- Consider a family of knots of finite topological order, J_1, J_2, \ldots with distinct, prime Alexander polynomials.
Example: a linearly independent family of knots in \mathcal{C} via infection.

- Consider a family of knots of finite topological order, J_1, J_2, \ldots with distinct, prime Alexander polynomials.
- By first corollary, $\rho^1(J_n) = 0$

\[\rho^1(K_n) = \rho^1(J_n) + \rho^0(A) = \rho^0(A) \neq 0 \] by the second corollary, \{K_1, K_2, \ldots\} is linearly independent.
Example: a linearly independent family of knots in C via infection.

- Consider a family of knots of finite topological order, J_1, J_2, \ldots with distinct, prime Alexander polynomials.
- By first corollary, $\rho^1(J_n) = 0$
- Let K_n be given from J_n by infection along a curve which is nonzero in $A_0(J_n)$ using a knot A with $\rho^0(A) \neq 0$.

\[A \quad n \quad -n \]

K_n
Example: a linearly independent family of knots in C via infection.

- Consider a family of knots of finite topological order, J_1, J_2, \ldots with distinct, prime Alexander polynomials.
- By first corollary, $\rho^1(J_n) = 0$
- Let K_n be given from J_n by infection along a curve which is nonzero in $A_0(J_n)$ using a knot A with $\rho^0(A) \neq 0$.
- $\rho^1(K_n) = \rho^1(J_n) + \rho^0(A) = \rho^0(A) \neq 0$
Consider a family of knots of finite topological order, J_1, J_2, \ldots with distinct, prime Alexander polynomials.

By first corollary, $\rho^1(J_n) = 0$

Let K_n be given from J_n by infection along a curve which is nonzero in $A_0(J_n)$ using a knot A with $\rho^0(A) \neq 0$.

$\rho^1(K_n) = \rho^1(J_n) + \rho^0(A) = \rho^0(A) \neq 0$

by the second corollary, $\{K_1, K_2, \ldots \}$ is linearly independent.
Proof of first big theorem

I start by constructing a 4-manifold whose signature defect is the sum of ρ-invariants in question. Take $M(K_1) \times [0,1] \sqcup ... \sqcup M(K_n) \times [0,1]$ and connect it by gluing together neighborhoods of meridians. Glue a slice disk compliment for $K_1 \# ... \# K_n$ to the $M(K_1 \# ... \# K_n)$-component of the boundary. It is the anisotropic assumption that lets us cap the cobordism safely.

$M(K_1)M(K_2)M(K_3)M(K_1 \# K_2 \# K_3)W_0W_V$ coral reef upside-down = jellyfish
Proof of first big theorem

I start by constructing a 4-manifold whose signature defect is the sum of ρ-invariants in question.
Proof of first big theorem

I start by constructing a 4-manifold whose signature defect is the sum of ρ-invariants in question. Take $M(K_1) \times [0, 1] \sqcup \ldots M(K_n) \times [0, 1]$.

\[M(K_1) \quad M(K_2) \quad M(K_3) \]
Proof of first big theorem

I start by constructing a 4-manifold whose signature defect is the sum of ρ-invariants in question. Take $M(K_1) \times [0,1] \sqcup \ldots M(K_n) \times [0,1]$ and connect it by gluing together neighborhoods of meridians.
Proof of first big theorem

I start by constructing a 4-manifold whose signature defect is the sum of ρ-invariants in question. Take $M(K_1) \times [0, 1] \sqcup \ldots M(K_n) \times [0, 1]$ and connect it by gluing together neighborhoods of meridians. Glue a slice disk compliment for $K_1 \# \ldots \# K_n$ to the $M(K_1 \# \ldots \# K_n)$-component of the boundary.

\[W \quad V \quad W_0 \]

\[M(K_1) \quad M(K_2) \quad M(K_3) \]
I start by constructing a 4-manifold whose signature defect is the sum of \(\rho \)-invariants in question. Take \(M(K_1) \times [0, 1] \sqcup \ldots \times M(K_n) \times [0, 1] \) and connect it by gluing together neighborhoods of meridians. Glue a slice disk compliment for \(K_1 \# \ldots \# K_n \) to the \(M(K_1 \# \ldots \# K_n) \)-component of the boundary.

It is the anisotropic assumption that lets us cap the cobordism safely.
Proof of first big theorem

I start by constructing a 4-manifold whose signature defect is the sum of \(\rho \)-invariants in question. Take \(M(K_1) \times [0, 1] \sqcup \ldots M(K_n) \times [0, 1] \) and connect it by gluing together neighborhoods of meridians. Glue a slice disk compliment for \(K_1 \# \ldots \# K_n \) to the \(M(K_1 \# \ldots \# K_n) \)-component of the boundary.

It is the anisotropic assumption that lets us cap the cobordism safely.

\[
\begin{array}{ccc}
W & V \\
\downarrow & \downarrow \\
W_0 & \\
\downarrow & \downarrow \\
M(K_1) & M(K_2) & M(K_3)
\end{array}
\]

coral reef upside-down = jellyfish
Proof of first big theorem

A coefficient system on W must be found.

\[\pi_1(W) \rightarrow \pi_1(M(K_i)) \rightarrow \pi_1(M(K_i))^{(2)} \]
Proof of first big theorem

Every inclusion on first homology is an isomorphism. (So $A_0^p(W) = H_1(W; R_p)$ makes sense.)

\[\pi_1(V) \xrightarrow{\sim} H_1(V) = \mathbb{Z} \]
\[\pi_1(M(#K_i)) \xrightarrow{\sim} H_1(M(#K_1)) = \mathbb{Z} \]
\[\pi_1(W_0) \xrightarrow{\sim} H_1(W_0) = \mathbb{Z} \]
\[\pi_1(M(K_i)) \xrightarrow{\sim} H_1(M_i) = \mathbb{Z} \]
Proof of first big theorem

Claim: \(\ker(A^p_0(K_i) \rightarrow A^p_0(W)) \) is isotropic and thus, zero.
Proof of first big theorem

Claim: \(\ker(A_0^p(K_i) \to A_0^p(W)) \) is isotropic and thus, zero.
\[P = \ker(A_0^p(\#K_i) \to A_0^p(V)) \] is isotropic.
Proof of first big theorem

Claim: \(\ker(A_0^p(K_i) \to A_0^p(W)) \) is isotropic and thus, zero.

\(P = \ker (A_0^p(\#K_i) \to A_0^p(V)) \) is isotropic.

\[
\begin{align*}
A_0^p(V) & \xrightarrow{\cong} \bigoplus A_0^p(K_j) \\
\bigoplus A_0^p(K_j) & \xrightarrow{\cong} A_0^p(\#K_i) \\
A_0^p(\#K_i) & \xrightarrow{\cong} A_0^p(W_0) \\
A_0^p(W_0) & \xrightarrow{\cong} A_0^p(K_i)
\end{align*}
\]
Proof of first big theorem

\[
\frac{\pi_1(K)}{\pi_1(K)_{(2)}^p} = H_1(M(K_i)) \ltimes A_0^p(K_i) \mathbb{Z}
\]
Proof of first big theorem

Thus, \[\sum \rho_p^1(K_i) = \sigma^2(W, \phi_p^1) - \sigma(W) = 0 \]
Twist knots

Need to compute $\rho^1(T_{x^2+x+1})$.
Twist knots

Need to compute $\rho^1(T_{x^2+x+1})$. This is hard. The infection trick won’t work.
Twist knots

Need to compute $\rho^1(T_{x^2+x+1})$.
This is hard. The infection trick won’t work. Instead try to compute
$2\rho^1(T_n) = \rho^1(T_n \# T_n)$.

\begin{tikzpicture}
\draw (0,0) circle (1);
\draw (1,0) circle (1);
\draw (2,0) circle (1);
\draw (3,0) circle (1);
\draw (4,0) circle (1);
\draw (5,0) circle (1);
\draw (6,0) circle (1);
\draw (7,0) circle (1);
\draw (8,0) circle (1);
\draw (9,0) circle (1);
\draw (0,1) circle (1);
\draw (1,1) circle (1);
\draw (2,1) circle (1);
\draw (3,1) circle (1);
\draw (4,1) circle (1);
\draw (5,1) circle (1);
\draw (6,1) circle (1);
\draw (7,1) circle (1);
\draw (8,1) circle (1);
\draw (9,1) circle (1);
\node at (0.5,0.5) {$-n$};
\node at (2.5,0.5) {$+1$};
\node at (5.5,0.5) {$-n$};
\node at (7.5,0.5) {$+1$};
\end{tikzpicture}
Twist knots

Need to compute $\rho^1(T_{x^2+x+1})$. This is hard. The infection trick won’t work. Instead try to compute $2\rho^1(T_n) = \rho^1(T_n\# T_n)$. This is algebraically slice, and has a metabolizing link. The following theorem will allow us to get a handle on ρ^1.
Second big theorem: computing ρ^1.

Theorem (D.)

Let K_1, \ldots, K_n be (not necessarily distinct) p-anisotropic knots. Suppose $\# K_i$ is algebraically slice.

Let F be a genus g Seifert surface for $\# K_i$. Let L be a link of g curves on F representing a metabolizer for the Seifert form, such that the meridians about the bands on which the components of L sit form a \mathbb{Z}-linearly independent set in $A_{p}^0(\# K_i)/P$, where P is the submodule of $A_{p}^0(\# K_i)$ generated by L.

Let $\eta(L)$ be the rank of the Alexander module of L. Then

$$\left| \sum_{i=1}^{n} \rho^1_p(K_i) - \rho^0(L) \right| \leq g - 1 - \eta(L).$$

ρ^1_p (a nonabelian ρ-invariant) is approximated by ρ^0 (an abelian ρ-invariant). The latter is more reasonable to expect to compute.
Second big theorem: computing ρ^1.

Theorem (D.)

Let K_1, \ldots, K_n be (not necessarily distinct) p-anisotropic knots. Suppose $\# K_i$ is algebraically slice. Let F be a genus g Seifert surface for $\# K_i$. Let $\eta(L)$ be the rank of the Alexander module of L.

Then $\left| \sum (\rho^1(K_i)) - \rho^0(L) \right| \leq g - 1 - \eta(L)$. ρ^1 (a nonabelian ρ-invariant) is approximated by ρ^0 (an abelian ρ-invariant). The latter is more reasonable to expect to compute.
Second big theorem: computing ρ^1.

Theorem (D.)

Let K_1, \ldots, K_n be (not necessarily distinct) p-anisotropic knots. Suppose $\# K_i$ is algebraically slice. Let F be a genus g Seifert surface for $\# K_i$. Let L be a link of g curves on F representing a metabolizer for the Seifert form,

\[\rho^1 \] is approximated by ρ^0 (an abelian ρ-invariant). The latter is more reasonable to expect to compute.
Second big theorem: computing ρ^1.

Theorem (D.)

Let K_1, \ldots, K_n be (not necessarily distinct) p-anisotropic knots. Suppose $\# K_i$ is algebraically slice. Let F be a genus g Seifert surface for $\# K_i$. Let L be a link of g curves on F representing a metabolizer for the Seifert form, such that the meridians about the bands on which the components of L sit form a \mathbb{Z}-linearly independent set in $A_p^0(\# K_i)/P$, where P is the submodule of $A_p^0(\# K_i)$ generated by L.

ρ^1 (a nonabelian ρ-invariant) is approximated by ρ^0 (an abelian ρ-invariant). The latter is more reasonable to expect to compute.
Second big theorem: computing ρ^1.

Theorem (D.)

Let K_1, \ldots, K_n be (not necessarily distinct) p-anisotropic knots. Suppose $\#K_i$ is algebraically slice. Let F be a genus g Seifert surface for $\#K_i$. Let L be a link of g curves on F representing a metabolizer for the Seifert form, such that the meridians about the bands on which the components of L sit form a \mathbb{Z}-linearly independent set in $A^p_0(\#K_i)/P$, where P is the submodule of $A^p_0(\#K_i)$ generated by L. Let $\eta(L)$ be the rank of the Alexander module of L. Then

$$\left|\sum_{i=1}^n \rho^1_{K_i} - \rho^0(L)\right| \leq g - 1 - \eta(L).$$

ρ^1 (a nonabelian ρ-invariant) is approximated by ρ^0 (an abelian ρ-invariant). The latter is more reasonable to expect to compute.
Second big theorem: computing ρ^1.

Theorem (D.)

Let K_1, \ldots, K_n be (not necessarily distinct) p-anisotropic knots. Suppose $\# K_i$ is algebraically slice. Let F be a genus g Seifert surface for $\# K_i$. Let L be a link of g curves on F representing a metabolizer for the Seifert form, such that the meridians about the bands on which the components of L sit form a \mathbb{Z}-linearly independent set in $A^p_0(\# K_i)/P$, where P is the submodule of $A^p_0(\# K_i)$ generated by L. Let $\eta(L)$ be the rank of the Alexander module of L.

Then

$$\left| \sum (\rho^1_p(K_i)) - \rho^0(L) \right| \leq g - 1 - \eta(L).$$
Second big theorem: computing ρ^1.

Theorem (D.)

Let K_1, \ldots, K_n be (not necessarily distinct) p-anisotropic knots. Suppose $\# K_i$ is algebraically slice. Let F be a genus g seifert surface for $\# K_i$. Let L be a link of g curves on F representing a metabolizer for the Seifert form, such that the meridians about the bands on which the components of L sit form a \mathbb{Z}-linearly independent set in $A^p_0(\# K_i)/P$, where P is the submodule of $A^p_0(\# K_i)$ generated by L. Let $\eta(L)$ be the rank of the Alexander module of L.

Then

$$\left| \sum (\rho^1_p(K_i)) - \rho^0(L) \right| \leq g - 1 - \eta(L).$$

ρ^1_p (a nonabelian ρ-invariant) is approximated by ρ^0 (an abelian ρ-invariant). The latter is more reasonable to expect to compute.
More examples: Infection by a string link.

Let L be a 2 component link with zero linking numbers. $J_n(L) \# J_n$ is algebraically slice.
More examples: Infection by a string link.

Let L be a 2 component link with zero linking numbers. $J_n(L) \# J_n$ is algebraically slice. It has L as a metabolizer.
More examples: Infection by a string link.

Let L be a 2 component link with zero linking numbers. $J_n(L) \# J_n$ is algebraically slice. It has L as a metabolizer.

$$|\rho^1(J_n(L)) + \rho^1(J_n) - \rho^0(L)| \leq 2 - 1 - \eta(L) \leq 1.$$
More examples: Infection by a string link.

Let L be a 2 component link with zero linking numbers. $J_n(L) \# J_n$ is algebraically slice. It has L as a metabolizer.

\[|\rho^1(J_n(L)) + \rho^1(J_n) - \rho^0(L)| \leq 2 - 1 - \eta(L) \leq 1. \]

Thus, if $|\rho^0(L)| > 1$, then $\rho^1(J_n(L)) + \rho^1(J_n) \neq 0$.

\[\rho^1(J_n) = 0. \]

Thus, $\rho^1(J_n(L)) \neq 0$ and \{ $J_n(L)$: $n \geq 1$ \} is linearly independent.
More examples: Infection by a string link.

Let \(L \) be a 2 component link with zero linking numbers. \(J_n(L) \neq J_n \) is algebraically slice. It has \(L \) as a metabolizer.

\[
|\rho^1(J_n(L)) + \rho^1(J_n) - \rho^0(L)| \leq 2 - 1 - \eta(L) \leq 1.
\]

Thus, if \(|\rho^0(L)| > 1 \), then \(\rho^1(J_n(L)) + \rho^1(J_n) \neq 0 \). As in the previous example, \(\rho^1(J_n) = 0 \).
More examples: Infection by a string link.

Let L be a 2 component link with zero linking numbers. $J_n(L) \# J_n$ is algebraically slice. It has L as a metabolizer.

$$|\rho^1(J_n(L)) + \rho^1(J_n) - \rho^0(L)| \leq 2 - 1 - \eta(L) \leq 1.$$ Thus, if $|\rho^0(L)| > 1$, then $\rho^1(J_n(L)) + \rho^1(J_n) \neq 0$. As in the previous example, $\rho^1(J_n) = 0$. Thus, $\rho^1(J_n(L)) \neq 0$ and $\{J_n(L) : n \geq 1\}$ is linearly independent.
Comparison to Casson-Gordon invariants and Metabelian ρ invariants corresponding to isotropy

- **(advantage)** ρ_p^1 is not defined in terms of metabolizers/isotropic submodules: only one computation needs to be made, instead of (potentially infinitely) many.

- **(disadvantage)** Only applies to knots whose every prime factor is p-anisotropic. In particular, this technique cannot say anything about prime algebraically slice knots, for which the other invariants work very well.
Start with W_0 as in the previous proof, consider L as a link in $\partial^+ W_0$. Add 2-handles to the zero framing of L. Adding a three handle to this manifold results in a manifold with boundary $(\sqcup M(K_i)) \sqcup -M(L)$.

\[M(K_1) \sqcup M(K_2) \sqcup M(K_3) \sqcup (K_1 \# K_2 \# K_3) \sqcup L \]
The 4-manifold used to prove the second big theorem

Start with W_0 as in the previous proof,

$$M(K_1 \# K_2 \# K_3)$$
The 4-manifold used to prove the second big theorem

Start with W_0 as in the previous proof, consider L as a link in $\partial_+ W_0$.
The 4-manifold used to prove the second big theorem

Start with W_0 as in the previous proof, consider L as a link in $\partial_+ W_0$. Add 2-handles to the zero framing of L.

$$M(K_1) \cup M(K_2) \cup M(K_3)$$
The 4-manifold used to prove the second big theorem

Start with W_0 as in the previous proof, consider L as a link in $\partial^+ W_0$. Add 2-handles to the zero framing of L. Adding a three handle to this manifold results in a manifold with boundary $(\sqcup M(K_i)) \sqcup -M(L)$

![Diagram](image-url)
The 4-manifold used to prove the second big theorem

\[\pi_1(M(L)) \rightarrow H_1(M(L)) \]
\[\pi_1(W) \rightarrow \frac{\pi_1(W)}{\pi_1(W)^{(2)}} \]
\[\pi_1(M(K_i)) \rightarrow \frac{\pi_1(M(K_i))}{\pi_1(M(K_i))^{(2)}} \]
The 4-manifold used to prove the second big theorem

Thus,
\[\sum \rho_p^1(K_i) - \rho^0(L) = \sigma^2(W, \phi_p^1) - \sigma(W) \]
The 4-manifold used to prove the second big theorem

Thus,
\[\sum \rho_p^1(K_i) - \rho^0(L) = \sigma^2(W, \phi_p^1) - \sigma(W) \]

\[\sigma(W) = 0 \]
\[|\sigma^2(W, \phi_p^1)| \leq \text{rank} \left(\frac{H_2(W; \Gamma)}{H_2(\partial W; \Gamma)} \right) \]
\[= g - 1 - \eta(L) \]

where \(\Gamma = \mathbb{Q} \left[\frac{\pi_1(W)}{\pi_1(W)^{(2)}_p} \right] \)
Proof of main application.

For \(n = -x^2 - x - 1 \), \(T_n \# T_n \) is algebraically slice.
Proof of main application.

For \(n = -x^2 - x - 1 \), \(T_n \# T_n \) is algebraically slice. It has a metabolizer which I call \(L_x \).
Proof of main application.

For \(n = -x^2 - x - 1 \), \(T_n \# T_n \) is algebraically slice. It has a metabolizer which I call \(L_x \). Thus we are in the setting of the second big theorem.
Computation.

- If $|\rho^0(L_x)| > 1$ then $\rho^1(T_n) \neq 0$, since $|2\rho^1(T_n) - \rho^0(L_x)| < 2 - 1 - 0$ and the proof of linear independence will be complete, since they have distinct, prime Alexander polynomials.
Computation.

- If $|\rho^0(L_x)| > 1$ then $\rho^1(T_n) \neq 0$, since $|2\rho^1(T_n) - \rho^0(L_x)| < 2 - 1 - 0$ and the proof of linear independence will be complete, since they have distinct, prime Alexander polynomials.
- The computation of $\rho^0(L_x)$ can be reduced to planar considerations, algorithmized, and implemented on a computer.

Computation.

- If $|\rho^0(L_x)| > 1$ then $\rho^1(T_n) \neq 0$, since $|2\rho^1(T_n) - \rho^0(L_x)| < 2 - 1 - 0$ and the proof of linear independence will be complete, since they have distinct, prime Alexander polynomials.

- The computation of $\rho^0(L_x)$ can be reduced to planar considerations, algorithmized, and implemented on a computer.

- I will do the computations by hand for an easier example, and then state the results for L_x. In the end, $\rho^0(L_x) < -1$ for each x, and the proof will be complete.
Simplified example

- Let K be the knot with the surgery description below. It happens to be the left handed trefoil.
Simplified example

- Let K be the knot with the surgery description below. It happens to be the left handed trefoil.
- This surgery description gives $M(K)$ as the boundary of the 4-manifold, W. The associated inclusion is an isomorphism on first homology.
Simplified example

- Let K be the knot with the surgery description below. It happens to be the left handed trefoil.
- This surgery description gives $M(K)$ as the boundary of the 4-manifold, W. The associated inclusion is an isomorphism on first homology.
- Thus, $\rho^0(K) = \sigma^2(W, \phi) - \sigma(W)$.

\[\begin{diagram}
 \node{\text{\textbullet}}
 \arrow{东南, blue}{-1}
 \node{\text{\textbullet}}
 \end{diagram} \]
Simplified example

- Let \(K \) be the knot with the surgery description below. It happens to be the left handed trefoil.
- This surgery description gives \(M(K) \) as the boundary of the 4-manifold, \(W \). The associated inclusion is an isomorphism on first homology.
- Thus, \(\rho^0(K) = \sigma^2(W, \phi) - \sigma(W) \).
- By inspection, \(\sigma(W) = -1 \).

\[
\begin{align*}
-1
\end{align*}
\]
Computing $\sigma^2(W)$:
Computing $\sigma^2(W)$:

- the curve, γ, lifts to the universal abelian cover of $M(\text{unknot})$
Computing $\sigma^2(W)$:

- the curve, γ, lifts to the universal abelian cover of $M(\text{unknot})$ where it bounds an embedded disk, D. This disk together with the core of the 2-handle glued to γ form the 2-sphere S which generates $H_2(W; \mathbb{Q}[\mathbb{Z}])$.

\[\langle S, S \rangle = -t - t^{-1} + 1 \]

This is the twisted intersection matrix of $W - \gamma$.

\[\left[-t - t^{-1} + 1 \right] \]
Computing $\sigma^2(W)$:

- The curve, γ, lifts to the universal abelian cover of $M(\text{unknot})$ where it bounds an embedded disk, D. This disk together with the core of the 2-handle glued to γ form the 2-sphere S which generates $H_2(W; \mathbb{Q}[\mathbb{Z}])$.
- The twisted intersection form of W is given by the self intersection of S.
Computing $\sigma^2(W)$:

- The curve, γ, lifts to the universal abelian cover of $M(\text{unknot})$ where it bounds an embedded disk, D. This disk together with the core of the 2-handle glued to γ form the 2-sphere S which generates $H_2(W; \mathbb{Q}[\mathbb{Z}])$.
- The twisted intersection form of W is given by the self intersection of S.
- The self intersection of S in $H_2(W; \mathbb{Q}[\mathbb{Z}])$ is the same as the intersection (with coefficients) between D and the -1 push-off of γ in the cover of $M(\text{unknot})$.

\[
\langle S, S \rangle = -t^{-1} - t - 1 + 1, \text{ so that } \left[-t^{-1} - t - 1 + 1 \right] \text{ is the twisted intersection matrix of } W_{-1}.\]
Computing $\sigma^2(W)$:

- the curve, γ, lifts to the universal abelian cover of $M(\text{unknot})$ where it bounds an embedded disk, D. This disk together with the core of the 2-handle glued to γ form the 2-sphere S which generates $H_2(W; \mathbb{Q}[\mathbb{Z}])$.
- The twisted intersection form of W is given by the self intersection of S.
- The self intersection of S in $H_2(W; \mathbb{Q}[\mathbb{Z}])$ is the same as the intersection (with coefficients) between D and the -1 push-off of γ in the cover of $M(\text{unknot})$.
- counting these, $\langle S, S \rangle = -t - t^{-1} + 1$, so that $[-t - t^{-1} + 1]$ is the twisted intersection matrix of W
Computing $\sigma^2(W)$:

The transform from $l^2(\mathbb{Z})$ to $L^2(S^1)$ ($S^1 \subseteq \mathbb{C}$) sending t^n to z^n is an isomorphism: $[1 - t - t^{-1}]$ has the same signature as $[1 - z - z^{-1}] = [1 - 2 \text{Re}(z)]$ which is the integral of $\text{sign}(1 - 2 \text{Re}(z))$ over S^1, which is $\frac{1}{3}$. Thus, $\rho^0(K) = \frac{1}{3} - (-1) = \frac{4}{3}$.
Computation for the link, L_2

In general this can be duplicated for any link arising as ±1 surgery along commutator curves on the unlink.
Computation for the link, L_2

In general this can be duplicated for any link arising as ± 1 surgery along commutator curves on the unlink. With this in mind, L_2 can be realized as such.
Computation for the link, L_2

In general this can be duplicated for any link arising as ± 1 surgery along commutator curves on the unlink. With this in mind, L_2 can be realized as such.
Computation for the link, L_2

In general this can be duplicated for any link arising as ±1 surgery along commutator curves on the unlink. With this in mind, L_2 can be realized as such.
Computation for the link, L_2

In general this can be duplicated for any link arising as ± 1 surgery along commutator curves on the unlink. With this in mind, L_2 can be realized as such. The resulting 4-manifold has regular intersection form (by inspection)

$$
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
$$
Computation for the link, L_2

In general this can be duplicated for any link arising as ±1 surgery along commutator curves on the unlink. With this in mind, L_2 can be realized as such. The resulting 4-manifold has regular intersection form (by inspection)

$$
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix},
$$

and twisted intersection form (computed by taking the algorithm outlined for the trefoil knot and implementing it on a computer)

$$
\begin{pmatrix}
1 + xy^2 + y + x^{-1}y^{-2} + y^{-1} & -xy - y^{-2} & xy + y^{-2} \\
-y^2 - x^{-1}y^{-1} & y + y^{-1} & -y + x^{-1} - y^{-1} \\
y^2 + x^{-1}y^{-1} & -y + x - y^{-1} & y + y^{-1} \\
\end{pmatrix}
$$
Computation for the link, \(L_2 \)

In general this can be duplicated for any link arising as \(\pm 1 \) surgery along commutator curves on the unlink. With this in mind, \(L_2 \) can be realized as such. The resulting 4-manifold has regular intersection form (by inspection)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix},
\]

and twisted intersection form (computed by taking the algorithm outlined for the trefoil knot and implementing it on a computer)

\[
\begin{pmatrix}
1 + xy^2 + y + x^{-1}y^{-2} + y^{-1} & -xy - y^{-2} & xy + y^{-2} \\
-y^2 - x^{-1}y^{-1} & y + y^{-1} & -y + x^{-1} - y^{-1} \\
y^2 + x^{-1}y^{-1} & -y + x - y^{-1} & y + y^{-1} \\
\end{pmatrix}
\]

which have signatures 4 and \(\sim .38 \) (numerically integrating via computer).
Computation for the link, L_2

In general this can be duplicated for any link arising as ± 1 surgery along commutator curves on the unlink. With this in mind, L_2 can be realized as such. The resulting 4-manifold has regular intersection form (by inspection)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
\]

and twisted intersection form (computed by taking the algorithm outlined for the trefoil knot and implementing it on a computer)

\[
\begin{pmatrix}
1 + xy^2 + y + x^{-1}y^{-2} + y^{-1} & -xy - y^{-2} & xy + y^{-2} \\
-y^2 - x^{-1}y^{-1} & y + y^{-1} & -y + x^{-1} - y^{-1} \\
y^2 + x^{-1}y^{-1} & -y + x - y^{-1} & y + y^{-1}
\end{pmatrix}
\]

which have signatures 4 and $\sim .38$ (numerically integrating via computer). Thus, $\rho^0(L_2) \sim -3.62$ and $2\rho^1(K_{-7}) \lesssim -2.62$ ($-7 = -2^2 - 2 - 1$), and in particular is not zero.
Computation for the link, L_x

L_{x+1} can be realized from L_x by $+1$ surgery along $2x - 1$ new commutator curves.
Computation for the link, L_x

L_{x+1} can be realized from L_x by $+1$ surgery along $2x - 1$ new commutator curves.

Proposition

If a link L' is realized as $+1$ surgery along commutator curves on another link L, then $\rho^0(L') \leq \rho^0(L)$
Computation for the link, L_x

L_{x+1} can be realized from L_x by $+1$ surgery along $2x - 1$ new commutator curves.

Proposition

If a link L' is realized as $+1$ surgery along commutator curves on another link L, then $\rho^0(L') \leq \rho^0(L)$

Thus $\rho^0(L_x) \lesssim -3.62$ for all $x \geq 2$ and $\rho^1(T_{-x^2-x-1}) \neq 0$.
Computation for the link, L_x

L_{x+1} can be realized from L_x by $+1$ surgery along $2x - 1$ new commutator curves.

Proposition

If a link L' is realized as $+1$ surgery along commutator curves on another link L, then $\rho^0(L') \leq \rho^0(L)$

Thus $\rho^0(L_x) \lesssim -3.62$ for all $x \geq 2$ and $\rho^1(T_{-x^2-x-1}) \neq 0$. The knots have distinct, prime Alexander polynomials and so are linearly independent.
Anisotropic knots and infection.

Definition

\(\tilde{\rho}_p^1 \) is some other localized \(\rho \)-invariant for knots.
Anisotropic knots and infection.

Theorem

Given Slice knots R_1, \ldots, R_n, infecting curves η_1, \ldots, η_n representing elements of $A_0(R_n)$ which sit in the sum of no pair of isotropic submodules and p-anisotropic knots K_1, \ldots, K_m, if

$$n \sum_{i=1}^{n} \tilde{\rho}_1 R_i(\eta_1, (R_2(\eta_2, \ldots (R_n(\eta_n(K_i)) \ldots))))$$ is slice

then

$$\sum_{i=1}^{n} \rho_p^1(K_i) = 0$$

The following is an immediate application.
Anisotropic knots and infection.

Corollary

Let R be a slice knot whose Alexander module has a unique nontrivial isotropic submodule. Let η be an arc representing an element of $A_0(R)$ which is not isotropic. Then $\{R(\eta, R(\eta, \ldots R(\eta(K_n)) \ldots)) | n = -x^2 - x - 1, x \geq 2\}$ is linearly independent, where infection is understood to take place some fixed number of times.