Applications of Logarithms: Compound interest
Compound interest

Suppose you put two dollar in the bank. The bank advertises an interest rate of \(5\% = .05 \) compounded every month.

How much do you have after one year (12 months)
Compound interest

Suppose you put two dollar in the bank. The bank advertises an interest rate of 5\% = 0.05 compounded every month.

How much do you have after one year (12 months)

After 0 months: 2$

After 1 month the bank multiplies adds 0.05 of your money back into the account.

You have 2 + 0.05 \times 2 = 2.1: You gained a dime!

Notice that adding 0.05 of your money back into the account is the same as multiplying by 1 + 0.05.

After 2 months the bank multiplies again by 1 + 0.05, giving you $2.1 \times 1.05 = 2.205 You gain another dime and a half penny!

In order to get to 12 months, you wind up multiplying by 1.05 12 times:

After 12 months you have $2 \times 1.05^{12} \approx 3.5917.$
Compound interest

Suppose you put two dollar in the bank. The bank advertises an interest rate of 5% = .05 compounded every month.

How much do you have after one year (12 months)

After 0 months: 2$

After one month the bank multiplies adds .05 of your money back into the account

You have $2 + .05 \cdot 2 = 2.1$: You gained a dime!
Compound interest

Suppose you put two dollar in the bank. The bank advertises an interest rate of 5% = .05 compounded every month.

How much do you have after one year (12 months)

After 0 months: 2$

After one month the bank multiplies adds .05 of your money back into the account

You have $2 + .05 \cdot 2 = 2.1$: You gained a dime!

Notice that adding .05 of your money back into the account is the same as multiplying by 1.05.
Compound interest

Suppose you put two dollar in the bank. The bank advertises an interest rate of 5% = .05 compounded every month.

How much do you have after one year (12 months)

After 0 months: 2$

After one month the bank multiplies adds .05 of your money back into the account

You have $2 + .05 \cdot 2 = 2.1$: You gained a dime!

Notice that adding .05 of your money back into the account is the same as multiplying by 1.05.

After 2 months the bank multiplies again by 1.05, giving you

$2.1 \cdot 1.05 = 2.205$ You gain another dime and a half penny!
Compound interest

Suppose you put two dollar in the bank. The bank advertises an interest rate of 5\% = .05 compounded every month.

How much do you have after one year (12 months)

After 0 months: 2$

After one month the bank multiplies adds .05 of your money back into the account

You have $2 + .05 \cdot 2 = 2.1$: You gained a dime!

Notice that adding .05 of your money back into the account is the same as multiplying by 1.05.

After 2 months the bank multiplies again by 1.05, giving you $2.1 \cdot 1.05 = 2.205$ You gain another dime and a half penny!

In order to get to 12 months, you wind up multiplying by 1.05 12 times:
Compound interest

Suppose you put two dollar in the bank. The bank advertises an interest rate of 5% = .05 compounded every month.

How much do you have after one year (12 months)

After 0 months: 2$

After one month the bank multiplies adds .05 of your money back into the account

You have $2 + .05 \cdot 2 = 2.1$: You gained a dime!

Notice that adding .05 of your money back into the account is the same as multiplying by 1.05.

After 2 months the bank multiplies again by 1.05, giving you $2.1 \cdot 1.05 = 2.205$ You gain another dime and a half penny!

In order to get to 12 months, you wind up multiplying by 1.05 12 times:

After 12 months you have $2 \cdot 1.05^{12} \sim 3.5917$.
Comparing various rates

After 12 months in a savings account with interest rate .05 compounded monthly you have $2 \cdot 1.05^{12} \sim \$3.5917$.

Another bank, hoping to compete offers a savings account which compounds its interest annually at a rate of $12 \cdot .05 = .6$. The bank advertises this as being equivalent since 5% per month should be the same as 60% per year.
Comparing various rates

After 12 months in a savings account with interest rate .05 compounded monthly you have $2 \cdot 1.05^{12} \sim 3.5917$. Another bank, hoping to compete offers a savings account which compounds its interest annually at a rate of $12 \cdot .05 = .6$. The bank advertises this as being equivalent since 5% per month should be the same as 60% per year.

If you invest two dollars in this account how much do you have after a year?
Comparing various rates

After 12 months in a savings account with interest rate .05 compounded monthly you have \(2 \cdot 1.05^{12} \approx $3.5917\).

Another bank, hoping to compete offers a savings account which compounds its interest annually at a rate of \(12 \cdot .05 = .6\). The bank advertises this as being equivalent since 5% per month should be the same as 60% per year.

If you invest two dollars in this account how much do you have after a year?

\(2 \cdot 1.6 = \)
Comparing various rates

After 12 months in a savings account with interest rate .05 compounded monthly you have $2 \cdot 1.05^{12} \sim $3.5917. Another bank, hoping to compete offers a savings account which compounds its interest annually at a rate of $12 \cdot .05 = .6$. The bank advertises this as being equivalent since 5% per month should be the same as 60% per year.

If you invest two dollars in this account how much do you have after a year?

$2 \cdot 1.6 = $3.2.$
Comparing various rates

After 12 months in a savings account with interest rate .05 compounded monthly you have $2 \cdot 1.05^{12} \sim $3.5917.

Another bank, hoping to compete offers a savings account which compounds its interest annually at a rate of $12 \cdot .05 = .6$. The bank advertises this as being equivalent since 5% per month should be the same as 60% per year.

If you invest two dollars in this account how much do you have after a year?

$2 \cdot 1.6 = 3.2.

Which of these savings accounts is better?
The compound interest formula

Suppose that a bank offers a savings account with an annual interest rate of r which it compounds n times per year.
If you put D dollars in this account and check mack in t years then how much do you have?
You have

$$A(t) = D \cdot \left(1 + \frac{r}{n}\right)^{n \cdot t}$$

Compare an annual interest rate of 0.05 compounded 12 times per year with an annual interest rate of 0.10 compounded 4 times throughout the year.
Which produces better results after one year? Use a machine to help with the computations.
The compound interest formula

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year.

If you put \(D \) dollars in this account and check mack in \(t \) years then how much do you have?

You have

\[
A(t) = D \cdot (1 + \frac{r}{n})^{nt}
\]

Applications of Logarithms: Compound interest
The compound interest formula

Suppose that a bank offers a savings account with an annual interest rate of r which it compounds n times per year. If you put D dollars in this account and check mack in t years then how much do you have?

You have

$$A(t) = D \cdot (1 + \frac{r}{n})^{n \cdot t}$$

Every time the bank updates it multiplies by $1 + (r/n)$. It does so n times every year.
The compound interest formula

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year. If you put \(D \) dollars in this account and check mack in \(t \) years then how much do you have?

You have

\[
A(t) = D \cdot (1 + \frac{r}{n})^{n \cdot t}
\]

Every time the bank updates it multiplies by \(1 + \frac{r}{n} \). It does so \(n \) times every year.
The compound interest formula

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year.
If you put \(D \) dollars in this account and check mack in \(t \) years then how much do you have?
You have

\[
A(t) = D \cdot (1 + \frac{r}{n})^{n \cdot t}
\]

Every time the bank updates it multiplies by \(1 + \frac{r}{n} \). It does so \(n \) times every year.

Compare an annual interest rate of .5 compounded 12 times per year with an annual interest rate of .1 compounded 4 times throughout the year. Which produces better results after one year? Use a machine to help with the computations
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of r which it compounds n times per year. If you invest 1 dollar, then after t years you have

\[A(t) = (1 + \frac{r}{n})^{n \cdot t} \]
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year.
If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = (1 + r/n)^{n \cdot t}
\]

Suppose you have an infinite collection of banks. The \(n' \)th bank offers an interest rate of 1 \((= 100\%)\) compounded \(n \) times per year.
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year. If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = (1 + \frac{r}{n})^{n \cdot t}
\]

Suppose you have an infinite collection of banks. The \(n \)’th bank offers an interest rate of 1 (\(= 100\% \)) compounded \(n \) times per year. Investing with the \(n \)’th bank for a year produces

\[
A(t) =
\]
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of r which it compounds n times per year.
If you invest 1 dollar, then after t years you have

$$A(t) = (1 + r/n)^{n \cdot t}$$

Suppose you have an infinite collection of banks. The n’th bank offers an interest rate of 1 (＝100%) compounded n times per year.
Investing with the n’th bank for a year produces

$$A(t) = (1 + r/n)^n$$

Compute this for $n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000$
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year.
If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = (1 + r/n)^{n\cdot t}
\]

Suppose you have an infinite collection of banks. The \(n \)'th bank offers an interest rate of 1 (\(= 100\% \)) compounded \(n \) times per year.
Investing with the \(n \)'th bank for a year produces

\[
A(t) = (1 + r/n)^n
\]

Compute this for \(n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>(10^5)</th>
<th>(10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year. If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = (1 + r/n)^{n \cdot t}
\]

Suppose you have an infinite collection of banks. The \(n \)'th bank offers an interest rate of 1 (= 100\%) compounded \(n \) times per year. Investing with the \(n \)'th bank for a year produces

\[
A(t) = (1 + r/n)^n
\]

Compute this for \(n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>(10^5)</th>
<th>(10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td>((1 + 1)^1 =)</td>
<td>((1 + 1)^2)</td>
<td>((1 + 1)^{10})</td>
<td>((1 + 1)^{100})</td>
<td>((1 + 1)^{1,000})</td>
<td>((1 + 1)^{10^5})</td>
<td>((1 + 1)^{10^9})</td>
</tr>
</tbody>
</table>
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of r which it compounds n times per year. If you invest 1 dollar, then after t years you have

$$A(t) = (1 + r/n)^{n\cdot t}$$

Suppose you have an infinite collection of banks. The n’th bank offers an interest rate of 1 (=100%) compounded n times per year. Investing with the n’th bank for a year produces

$$A(t) = (1 + r/n)^n$$

Compute this for $n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000, 000, 000$

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(t)$</td>
<td>$(1 + 1)^1 = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year.

If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = (1 + r/n)^{n\cdot t}
\]

Suppose you have an infinite collection of banks. The \(n \)'th bank offers an interest rate of 1 (\(= 100\% \)) compounded \(n \) times per year.

Investing with the \(n \)'th bank for a year produces

\[
A(t) = (1 + r/n)^n
\]

Compute this for \(n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>(10^5)</th>
<th>(10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td>((1 + 1)^1 = 2)</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year. If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = (1 + \frac{r}{n})^{n \cdot t}
\]

Suppose you have an infinite collection of banks. The \(n \)'th bank offers an interest rate of 1 (\(= 100\% \)) compounded \(n \) times per year. Investing with the \(n \)'th bank for a year produces

\[
A(t) = (1 + \frac{r}{n})^n
\]

Compute this for \(n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>(10^5)</th>
<th>(10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td>((1 + 1)^1 = 2)</td>
<td>2.25</td>
<td>2.5937</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year. If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = (1 + r/n)^{n\cdot t}
\]

Suppose you have an infinite collection of banks. The \(n \)'th bank offers an interest rate of 1 (\(= 100\% \)) compounded \(n \) times per year. Investing with the \(n \)'th bank for a year produces

\[
A(t) = (1 + r/n)^n
\]

Compute this for \(n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>((1 + 1)^{1} = 2)</th>
<th>2.25</th>
<th>2.5937</th>
<th>2.7169</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>100</td>
<td>1,000</td>
<td>(10^5)</td>
</tr>
<tr>
<td>(A(t))</td>
<td>((1 + 1)^1 = 2)</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year. If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = (1 + r/n)^{n\cdot t}
\]

Suppose you have an infinite collection of banks. The \(n \)'th bank offers an interest rate of 1 (\(= 100\% \)) compounded \(n \) times per year. Investing with the \(n \)'th bank for a year produces

\[
A(t) = (1 + r/n)^n
\]

Compute this for \(n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>(10^5)</th>
<th>(10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td>((1 + 1)^1 = 2)</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications of Logarithms: Compound interest
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of r which it compounds n times per year. If you invest 1 dollar, then after t years you have

$$A(t) = (1 + r/n)^{n \cdot t}$$

Suppose you have an infinite collection of banks. The n’th bank offers an interest rate of 1 (＝100%) compounded n times per year. Investing with the n’th bank for a year produces

$$A(t) = (1 + r/n)^n$$

Compute this for $n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000,000$

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(t)$</td>
<td>$(1 + 1)^1 = 2$</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td>2.7181</td>
<td></td>
</tr>
</tbody>
</table>
Continuously compounded interest. Euler’s number

Suppose that a bank offers a savings account with an annual interest rate of \(r \) which it compounds \(n \) times per year.

If you invest 1 dollar, then after \(t \) years you have

\[
A(t) = \left(1 + \frac{r}{n}\right)^{n \cdot t}
\]

Suppose you have an infinite collection of banks. The \(n \)'th bank offers an interest rate of 1 (\(= 100\%) \) compounded \(n \) times per year.

Investing with the \(n \)'th bank for a year produces

\[
A(t) = (1 + r/n)^n
\]

Compute this for \(n = 1, 2, 10, 100, 1,000, 100,000, 1,000,000, 1,000,000,000 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td>((1 + 1)^1 = 2)</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td>2.7181</td>
<td>2.7182</td>
</tr>
</tbody>
</table>
The natural exponential

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(t)$</td>
<td>$(1 + 1)^1 = 2$</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td>2.7181</td>
<td>2.7182</td>
</tr>
</tbody>
</table>

Is this getting close to something? It looks like it is getting close to a number around 2.7182. Euler's number e is defined to be the number that these numbers seem to be getting close to.

The limit of this collection of banks interest rates is the natural exponential e^t. If a bank offers continuously compounded interest with an annual interest rate of r they mean $A(t) = D \cdot e^{rt}$.

If you leave $D = 1$ in a bank with continuous interest rate of r for $t = 1$ years then how much do you have at the end of the year?
The natural exponential

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>(10^5)</th>
<th>(10^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td>((1 + 1)^1 = 2)</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td>2.7181</td>
<td>2.7182</td>
</tr>
</tbody>
</table>

Is this getting close to something? It looks like it is getting close to a number around 2.7182.
The natural exponential

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(t)$</td>
<td>$(1 + 1)^1 = 2$</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td>2.7181</td>
<td>2.7182</td>
</tr>
</tbody>
</table>

Is this getting close to something? It looks like it is getting close to a number around 2.7182.

Euler’s number e is **defined** to be the number that these numbers seem to be getting close to.
The natural exponential

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(t)$</td>
<td>$(1 + 1)^1 = 2$</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td>2.7181</td>
<td>2.7182</td>
</tr>
</tbody>
</table>

Is this getting close to something? It looks like it is getting close to a number around 2.7182.

Euler’s number e is **defined** to be the number that these numbers seem to be getting close to.

The **limit** of this collection of banks interest rates is the **natural exponential** e^t.

Applications of Logarithms: Compound interest
The natural exponential

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(t)$</td>
<td>$(1 + 1)^1 = 2$</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td>2.7181</td>
<td>2.7182</td>
</tr>
</tbody>
</table>

Is this getting close to something? It looks like it is getting close to a number around 2.7182.

Euler’s number e is defined to be the number that these numbers seem to be getting close to.

The limit of this collection of banks interest rates is the natural exponential e^t.

If a bank offers continuously compounded interest with an annual interest rate of r they mean

$A(t) =$
The natural exponential

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10^5</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(t)$</td>
<td>$(1 + 1)^1 = 2$</td>
<td>2.25</td>
<td>2.5937</td>
<td>2.7169</td>
<td>2.7048</td>
<td>2.7181</td>
<td>2.7182</td>
</tr>
</tbody>
</table>

Is this getting close to something? It looks like it is getting close to a number around 2.7182.

Euler’s number e is **defined** to be the number that these numbers seem to be getting close to.

The **limit** of this collection of banks interest rates is the **natural exponential** e^t.

If a bank offers **continuously compounded** interest with an annual interest rate of r they mean

$$A(t) = D \cdot e^{rt}.$$
Is this getting close to something? It looks like it is getting close to a number around 2.7182.
Euler’s number \(e \) is defined to be the number that these numbers seem to be getting close to.
The limit of this collection of banks interest rates is the natural exponential \(e^t \).
If a bank offers continuously compounded interest with an annual interest rate of \(r \) they mean
\[
A(t) = D \cdot e^{rt}.
\]
If you leave \(D = 1\) in a bank with continuous interest rate of \(r = 1 \) for \(t = 1 \) years then how much do you have at the end of the year?
Comparing some savings accounts

If you invest D dollars in a bank account with an annual interest rate of r compounded n times per year then after t time you have

$$A(t) = (1 + r/n)^{n\cdot t}$$

If you invest D dollars in a bank account with an annual interest rate of r compounded continuously then after t time you have

$$A(t) = D \cdot e^{rt}.$$

Suppose you look at three different bank accounts. The first has an annual interest rate of $.06 = 6\%$ compounded annually. The second has an annual interest rate of $.05 = 5\%$ compounded three times per month. The final has an annual interest rate of $.04$ compounded continuously. How do they compare?

Compute (with the aid of a machine) how much each has at the end of the year.
Review for the midterm.