Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called symmetric if some geometric move preserves it.
What is Symmetry?

Take some geometrical object. It is called **symmetric** if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

Examples with Symmetry

Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called **symmetric** if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>Reflection across x</th>
<th>Reflection across $(0, 0)$</th>
</tr>
</thead>
</table>

- Reflection across y sends (x, y) to $(-x, y)$.
- Reflection across x sends (x, y) to $(x, -y)$.
- Reflection across $(0, 0)$ sends (x, y) to $(-x, -y)$.

Examples with Symmetry

Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called **symmetric** if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>reflection across x</th>
<th>reflection across $(0, 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is Symmetry?

Take some geometrical object. It is called symmetric if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>Reflection across x</th>
<th>Reflection across $(0,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sends (x,y) to $(-x,y)$
What is Symmetry?

Take some geometrical object. It is called **symmetric** if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>reflection across x</th>
<th>reflection across $(0,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends (x,y) to $(-x,y)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called symmetric if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>reflection across x</th>
<th>reflection across $(0,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends (x,y) to $(-x,y)$</td>
<td>Sends (x,y) to $(x,-y)$</td>
<td>Sends (x,y) to $(-x,-y)$</td>
</tr>
</tbody>
</table>

Examples with Symmetry

Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called **symmetric** if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>reflection across x</th>
<th>reflection across (0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends (x,y) to $(-x,y)$</td>
<td>Sends (x,y) to $(x,-y)$</td>
<td></td>
</tr>
</tbody>
</table>

Examples with Symmetry

Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called **symmetric** if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>Reflection across x</th>
<th>Reflection across $(0, 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sends (x,y) to $(-x,y)$</td>
<td>Sends (x,y) to $(x,-y)$</td>
<td>Sends (x,y) to $(-x,-y)$</td>
</tr>
</tbody>
</table>

Examples with Symmetry

Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called symmetric if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>reflection across x</th>
<th>reflection across $(0, 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends (x, y) to $(-x, y)$</td>
<td>Sends (x, y) to $(x, -y)$</td>
<td>Sends (x, y) to $(-x, -y)$</td>
</tr>
</tbody>
</table>

Examples with Symmetry
What is Symmetry?

Take some geometrical object. It is called symmetric if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>Reflection across x</th>
<th>Reflection across $(0,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends (x,y) to $(-x,y)$</td>
<td>Sends (x,y) to $(x,-y)$</td>
<td>Sends (x,y) to $(-x,-y)$</td>
</tr>
</tbody>
</table>

Examples with Symmetry

Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called **symmetric** if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>reflection across x</th>
<th>reflection across $(0, 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends (x,y) to $(-x,y)$</td>
<td>Sends (x,y) to $(x,-y)$</td>
<td>Sends (x,y) to $(-x,-y)$</td>
</tr>
</tbody>
</table>

Examples with Symmetry

![Graph](image)

Symmetry of graphs. Circles
What is Symmetry?

Take some geometrical object. It is called **symmetric** if some geometric move preserves it.

Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin.

<table>
<thead>
<tr>
<th>Reflection across y</th>
<th>Reflection across x</th>
<th>Reflection across $(0,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends (x,y) to $(-x,y)$</td>
<td>Sends (x,y) to $(x,-y)$</td>
<td>Sends (x,y) to $(-x,-y)$</td>
</tr>
</tbody>
</table>

Examples with Symmetry
Reflect a point:

Reflection across the x–axis is given by $(x, y) \mapsto (x, -y)$

Reflection across the y–axis is given by $(x, y) \mapsto (-x, y)$

Reflection across the origin is given by $(x, y) \mapsto (-x, -y)$

Example:
For the point $P = (4, -2)$, write down the coordinates of and draw

 - The reflection of P across the x-axis.
 - The reflection of P across the y-axis.
 - The reflection of P across the origin.
Reflect a point:

Reflection across the $x-$axis is given by $(x, y) \mapsto (x, -y)$
Reflection across the $y-$axis is given by $(x, y) \mapsto (-x, y)$
reflection across the origin is given by $(x, y) \mapsto (-x, -y)$

Example:
For the point $P = (4, -2)$, write down the coordinates of and draw

- The reflection of P across the x-axis. $(4,2)$
- The reflection of P across the y-axis.
- The reflection of P across the origin.
Reflect a point:

Reflection across the x–axis is given by $(x, y) \mapsto (x, -y)$
Reflection across the y–axis is given by $(x, y) \mapsto (-x, y)$
reflection across the origin is given by $(x, y) \mapsto (-x, -y)$

Example:
For the point $P = (4, -2)$, write down the coordinates of and draw
- The reflection of P across the x-axis. $(4,2)$
- The reflection of P across the y-axis. $(-4,-2)$
- The reflection of P across the origin.
Reflect a point:

Reflection across the x–axis is given by $(x, y) \mapsto (x, -y)$
Reflection across the y–axis is given by $(x, y) \mapsto (-x, y)$
reflection across the origin is given by $(x, y) \mapsto (-x, -y)$

Example:
For the point $P = (4, -2)$, write down the coordinates of and draw
- The reflection of P across the x-axis. $(4,2)$
- The reflection of P across the y-axis. $(-4,-2)$
- The reflection of P across the origin.$(-4,2)$
Testing for symmetry for graphs of equations

A graph is called **Symmetric** with respect to a reflection if that reflection does not change the graph.

The following graphs are symmetric about (a) reflection across the x-axis (b) reflection across the y-axis (c) reflection about the origin.

\[
\begin{align*}
 y &= x^2 - 4 \\
 y &= x^3 - 3x \\
 x &= y^2 + 1 \\
 x^2 + y^2 &= 4
\end{align*}
\]
Testing for symmetry for graphs of equations

A graph is called **Symmetric** with respect to a reflection if that reflection does not change the graph.

The following graphs are symmetric about (a) reflection across the x-axis (b) reflection across the y-axis (c) reflection about the origin.

\[
\begin{align*}
y &= x^2 - 4 \\
y &= x^3 - 3x \\
x &= y^2 + 1 \\

\end{align*}
\]

(b)
Testing for symmetry for graphs of equations

A graph is called **Symmetric** with respect to a reflection if that reflection does not change the graph.

The following graphs are symmetric about (a) reflection across the x-axis (b) reflection across the y-axis (c) reflection about the origin.

\[
\begin{align*}
&y = x^2 - 4 \quad y = x^3 - 3x \quad x = y^2 + 1 \quad x^2 + y^2 = 4 \\
&\text{(b)} \quad \text{(c)}
\end{align*}
\]
Testing for symmetry for graphs of equations

A graph is called **Symmetric** with respect to a reflection if that reflection does not change the graph.

The following graphs are symmetric about (a) reflection across the x-axis (b) reflection across the y-axis (c) reflection about the origin.

\[y = x^2 - 4 \quad y = x^3 - 3x \quad x = y^2 + 1 \quad x^2 + y^2 = 4 \]
Testing for symmetry for graphs of equations

A graph is called **Symmetric** with respect to a reflection if that reflection does not change the graph.

The following graphs are symmetric about (a) reflection across the x-axis (b) reflection across the y-axis (c) reflection about the origin.

\[
y = x^2 - 4 \quad y = x^3 - 3x \quad x = y^2 + 1 \quad x^2 + y^2 = 4
\]

(b) | (c) | (a) | (a, b, c)
Testing for symmetry for graphs of equations

A graph is called **Symmetric** with respect to a reflection if that reflection does not change the graph.

The following graphs are symmetric about (a) reflection across the x-axis (b) reflection across the y-axis (c) reflection about the origin.

\[
\begin{align*}
 y &= x^2 - 4 \\
 y &= x^3 - 3x \\
 x &= y^2 + 1 \\
 x^2 + y^2 &= 4
\end{align*}
\]

(b) (c) (a) (a, b, c)

Analytic symmetry:
The graph of an equation is symmetric about the y-axis if you can replace x by $-x$ and get an equivalent equation.
The graph of an equation is symmetric about the x-axis if you can replace y by $-y$ and get an equivalent equation.
The graph of an equation is symmetric about the origin if you can replace x by $-x$ and y by $-y$ and get an equivalent equation.
Testing for symmetry for graphs of equations

A graph is called Symmetric with respect to a reflection if that reflection does not change the graph.

The following graphs are symmetric about (a) reflection across the x-axis (b) reflection across the y-axis (c) reflection about the origin.

\[y = x^2 - 4 \quad y = x^3 - 3x \quad x = y^2 + 1 \quad x^2 + y^2 = 4 \]

Analytic symmetry:
The graph of an equation is symmetric about the y-axis if you can replace x by $-x$ and get an equivalent equation
The graph of an equation is symmetric about the x-axis if you can replace y by $-y$ and get an equivalent equation
The graph of an equation is symmetric about the origin if you can replace x by $-x$ and y by $-y$ and get an equivalent equation

Check these examples.
checking for symmetry analytically

What Symmetries does the graph of $x^3 + x = y^2 - 1$ have?

- Across the x-axis?

Replace y by $-y$ to get

$$x^3 + x = (-y)^2 - 1$$

which is equivalent to

$$x^3 + x = y^2 - 1$$

This graph is Symmetric about x-axis.

- Across the y-axis?

Replace x by $-x$ to get

$$(-x)^3 + (-x) = y^2 - 1$$

which is equivalent to

$$-x^3 - x = y^2 - 1$$

This is not equivalent to the original equation. This graph is not symmetric about x-axis.

Symmetric about the origin?

Replace x by $-x$ and y by $-y$ and see if you get an equivalent equation.

I'll pause the lecture here to mention Wolfram alpha.
checking for symmetry analytically

What Symmetries does the graph of $x^3 + x = y^2 - 1$ have?

- Across the x-axis? Replace y by $-y$ to get

 $$x^3 + x = (-y)^2 - 1$$
checking for symmetry analytically

What Symmetries does the graph of $x^3 + x = y^2 - 1$ have?

- Across the x-axis? Replace y by $-y$ to get

 $$x^3 + x = (-y)^2 - 1 \quad \text{which is equivalent to} \quad x^3 + x = y^2 - 1$$
checking for symmetry analytically

What Symmetries does the graph of \(x^3 + x = y^2 - 1 \) have?

- Across the \(x \)-axis? Replace \(y \) by \(-y\) to get

 \[
x^3 + x = (-y)^2 - 1 \quad \text{which is equivalent to} \quad x^3 + x = y^2 - 1
 \]

 This graph is Symmetric about \(x \)-axis.

- Symmetric about the origin? Replace \(x \) by \(-x\) and \(y \) by \(-y\) and see if you get an equivalent equation.

I'll pause the lecture here to mention Wolfram α (alpha) Symmetry of graphs. Circles
checking for symmetry analytically

What Symmetries does the graph of \(x^3 + x = y^2 - 1 \) have?

- Across the \(x \)-axis? Replace \(y \) by \(-y \) to get

 \[
 x^3 + x = (-y)^2 - 1 \quad \text{which is equivalent to} \quad x^3 + x = y^2 - 1
 \]

 This graph is Symmetric about \(x \)-axis.

- Across the \(y \)-axis?

I'll pause the lecture here to mention Wolfram α (alpha) Symmetry of graphs. Circles
checking for symmetry analytically

What Symmetries does the graph of \(x^3 + x = y^2 - 1 \) have?

- Across the \(x \)-axis? Replace \(y \) by \(-y\) to get

\[
x^3 + x = (-y)^2 - 1 \quad \text{which is equivalent to} \quad x^3 + x = y^2 - 1
\]

This graph is Symmetric about \(x \)-axis.

- Across the \(y \)-axis? Replace \(x \) by \(-x\) to get

\[
(-x)^3 + (-x) = y^2 - 1
\]

I’ll pause the lecture here to mention Wolfram α (alpha) Symmetry of graphs. Circles.
checking for symmetry analytically

What Symmetries does the graph of \(x^3 + x = y^2 - 1 \) have?

- Across the \(x \)-axis? Replace \(y \) by \(-y\) to get
 \[x^3 + x = (-y)^2 - 1 \quad \text{which is equivalent to} \quad x^3 + x = y^2 - 1 \]
 This graph is Symmetric about \(x \)-axis.

- Across the \(y \)-axis? Replace \(x \) by \(-x\) to get
 \[(-x)^3 + (-x) = y^2 - 1 \quad \text{which is equivalent to} \quad -(x^3 + x) = y^2 - 1 \]
checking for symmetry analytically

What Symmetries does the graph of \(x^3 + x = y^2 - 1 \) have?

- Across the \(x \)-axis? Replace \(y \) by \(-y\) to get
 \[
 x^3 + x = (-y)^2 - 1 \quad \text{which is equivalent to} \quad x^3 + x = y^2 - 1
 \]

 This graph is Symmetric about \(x \)-axis.

- Across the \(y \)-axis? Replace \(x \) by \(-x\) to get
 \[
 (-x)^3 + (-x) = y^2 - 1 \quad \text{which is equivalent to} \quad -(x^3 + x) = y^2 - 1
 \]

 This is not equivalent to the original equation. This graph is not symmetric about \(x \)-axis.
checking for symmetry analytically

What Symmetries does the graph of $x^3 + x = y^2 - 1$ have?

- Across the x-axis? Replace y by $-y$ to get

 $$x^3 + x = (-y)^2 - 1$$

 which is equivalent to

 $$x^3 + x = y^2 - 1$$

 This graph is Symmetric about x-axis.

- Across the y-axis? Replace x by $-x$ to get

 $$(-x)^3 + (-x) = y^2 - 1$$

 which is equivalent to

 $$-(x^3 + x) = y^2 - 1$$

 This is not equivalent to the original equation. This graph is not symmetric about x-axis.

- Symmetric about the origin?
 Replace x by $-x$ and y by $-y$ and see if you get an equivalent equation.
checking for symmetry analytically

What Symmetries does the graph of \(x^3 + x = y^2 - 1 \) have?

- **Across the \(x \)-axis?** Replace \(y \) by \(-y\) to get
 \[
 x^3 + x = (-y)^2 - 1 \quad \text{which is equivalent to} \quad x^3 + x = y^2 - 1
 \]
 This graph is Symmetric about \(x \)-axis.

- **Across the \(y \)-axis?** Replace \(x \) by \(-x\) to get
 \[
 (-x)^3 + (-x) = y^2 - 1 \quad \text{which is equivalent to} \quad -(x^3 + x) = y^2 - 1
 \]
 This is not equivalent to the original equation. This graph is not symmetric about \(x \)-axis.

- **Symmetric about the origin?**
 Replace \(x \) by \(-x\) and \(y \) by \(-y\) and see if you get an equivalent equation.

I’ll pause the lecture here to mention Wolfram \(\alpha \) (alpha)
Using Symmetry to graph

We can use symmetry to cut the work of graphing in half.

Without a computer graph \(y = 4 - x^2 \):

\[
\begin{align*}
\text{Evaluate at } x &= 0, 1, 2, 3, 4; \\
\text{Symmetric about the } y\text{-axis} \\
\text{We only need to check positive } x\text{'s: The negatives will follow from symmetry.}
\end{align*}
\]

Without a computer graph \(y = \frac{1}{x} \):

\[
\begin{align*}
\text{Evaluate at } x &= 1/4, 1/3, 1/2, 1, 2, 3, 4; \\
\text{Symmetric about the origin} \\
\text{We only need to check positive } x\text{'s: The negatives will follow from symmetry.}
\end{align*}
\]

Let's use Wolfram \(\alpha \) (alpha) to check our work.
Using Symmetry to graph

We can use symmetry to cut the work of graphing in half.

Without a computer graph $y = 4 - x^2$:
Symmetric about the y-axis

Without a computer graph $y = \frac{1}{x}$:
Symmetric about the origin
Using Symmetry to graph

We can use symmetry to cut the work of graphing in half.

Without a computer graph \(y = 4 - x^2 \):
Symmetric about the \(y \)-axis
We only need to check positive \(x \)’s: The negatives will follow from symmetry.

Without a computer graph \(y = \frac{1}{x} \):
Using Symmetry to graph

We can use symmetry to cut the work of graphing in half.

Without a computer graph $y = 4 - x^2$:
Symmetric about the y-axis
We only need to check positive x’s: The negatives will follow from symmetry.
Evaluate at $x = 0, 1, 2, 3, 4$

Without a computer graph $y = \frac{1}{x}$:
Using Symmetry to graph

We can use symmetry to cut the work of graphing in half.

Without a computer graph $y = 4 - x^2$:
Symmetric about the y-axis
We only need to check positive x’s: The negatives will follow from symmetry.
Evaluate at $x = 0, 1, 2, 3, 4$

Without a computer graph $y = \frac{1}{x}$: Symmetric about the origin
Using Symmetry to graph

We can use symmetry to cut the work of graphing in half.

Without a computer graph \(y = 4 - x^2 \):
Symmetric about the \(y \)-axis
We only need to check positive \(x \)'s: The negatives will follow from symmetry.
Evaluate at \(x = 0, 1, 2, 3, 4 \)

Without a computer graph \(y = \frac{1}{x} \): Symmetric about the origin
We only need to check positive \(x \)'s: The negatives will follow from symmetry.
Using Symmetry to graph

We can use symmetry to cut the work of graphing in half.

Without a computer graph \(y = 4 - x^2 \):
Symmetric about the \(y \)-axis
We only need to check positive \(x \)'s: The negatives will follow from symmetry.
Evaluate at \(x = 0, 1, 2, 3, 4 \)

Without a computer graph \(y = \frac{1}{x} \): Symmetric about the origin
We only need to check positive \(x \)'s: The negatives will follow from symmetry.
Evaluate at \(x = 1/4, 1/3, 1/2, 1, 2, 3, 4 \)
Using Symmetry to graph

We can use symmetry to cut the work of graphing in half.

Without a computer graph $y = 4 - x^2$:
Symmetric about the y-axis
We only need to check positive x’s: The negatives will follow from symmetry.
Evaluate at $x = 0, 1, 2, 3, 4$

Without a computer graph $y = \frac{1}{x}$: Symmetric about the origin
We only need to check positive x’s: The negatives will follow from symmetry.
Evaluate at $x = 1/4, 1/3, 1/2, 1, 2, 3, 4$
Let’s use Wolfram α (alpha) to check our work.
Equations for Circles

The circle centered at \((h, k)\) with radius \(r\) is

- The set of all points \((x, y)\) which are exactly \(r\) away from \((h, k)\)

The standard equation for the circle of radius \(r\) centered at \((h, k)\) is

\[
(x - h)^2 + (y - k)^2 = r^2
\]

1. Give the standard equation for the circle centered at \((0, 1)\) of radius 2.

2. What are the center and radius of the circle given by

\[
(x - 3)^2 + (y - 5)^2 = 9
\]
Equations for Circles

The circle centered at \((h, k)\) with radius \(r\) is

- The set of all points \((x, y)\) which are exactly \(r\) away from \((h, k)\)

- The set of all points \((x, y)\) with \(\sqrt{(x - h)^2 + (y - k)^2} = r\)

Give the standard equation for the circle centered at \((0, 1)\) of radius 2.

What are the center and radius of the circle given by \((x - 3)^2 + (y - 5)^2 = 9\)?

Graph it
Equations for Circles

The circle centered at \((h, k)\) with radius \(r\) is

1. The set of all points \((x, y)\) which are exactly \(r\) away from \((h, k)\)

2. The set of all points \((x, y)\) with \(\sqrt{(x - h)^2 + (y - k)^2} = r\)

3. The set of all points \((x, y)\) with \((x - h)^2 + (y - k)^2 = r^2\)
Equations for Circles

The circle centered at \((h, k)\) with radius \(r\) is

- The set of all points \((x, y)\) which are exactly \(r\) away from \((h, k)\)

- The set of all points \((x, y)\) with \(\sqrt{(x - h)^2 + (y - k)^2} = r\)

- The set of all points \((x, y)\) with \((x - h)^2 + (y - k)^2 = r^2\)

The standard equation for the circle of radius \(r\) centered at \((h, k)\) is

\[(x - h)^2 + (y - k)^2 = r^2\]
Equations for Circles

The circle centered at \((h, k)\) with radius \(r\) is

- The set of all points \((x, y)\) which are exactly \(r\) away from \((h, k)\)
- The set of all points \((x, y)\) with \(\sqrt{(x - h)^2 + (y - k)^2} = r\)
- The set of all points \((x, y)\) with \((x - h)^2 + (y - k)^2 = r^2\)

The standard equation for the circle of radius \(r\) centered at \((h, k)\) is

\[
(x - h)^2 + (y - k)^2 = r^2
\]

1. Give the standard equation for the circle centered at \((0, 1)\) of radius 2.
2. What are the center and radius of the circle given by

\[
(x - 3)^2 + (y - 5)^2 = 9
\]

Graph it
Finding the x and y-intercepts of circles

The standard equation for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

Plug $y = 0$ into $(x - 7)^2 + (0 - 3)^2 = 25$.

$(x - 7)^2 + 9 = 25$

$(x - 7)^2 = 16$

$x - 7 = \pm 4$

$x = 7 \pm 4$

Two x-intercepts: One at $(11, 0)$ one at $(3, 0)$.

Find the y-intercepts by setting $x = 0$. Are there any?
Finding the x and y-intercepts of circles

The standard equation for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

plug $y = 0$ into $(x - 7)^2 + (y - 3)^2 = 5^2$
Finding the x and y-intercepts of circles

The standard equation for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

plug $y = 0$ into $(x - 7)^2 + (y - 3)^2 = 5^2$

$$(x - 7)^2 + (0 - 3)^2 = 25$$
Finding the x and y-intercepts of circles

The standard equation for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

plug $y = 0$ into $(x - 7)^2 + (y - 3)^2 = 5^2$

$(x - 7)^2 + (0 - 3)^2 = 25$

$(x - 7)^2 = 25 - 9 = 16$

$x - 7 = \pm 4$

$x = 7 + 4 = 11$ or $x = 7 - 4 = 3$

Two x-intercepts: one at $(11, 0)$, one at $(3, 0)$.

Find the y-intercepts by setting $x = 0$. Are there any?
Finding the x and y-intercepts of circles

The **standard equation** for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

Plug $y = 0$ into $(x - 7)^2 + (y - 3)^2 = 5^2$

$$(x - 7)^2 + (0 - 3)^2 = 25$$

$$(x - 7)^2 = 25 - 9 = 16$$

Two x-intercepts: One at $(11, 0)$, one at $(3, 0)$.

Find the y-intercepts by setting $x = 0$. Are there any?
Finding the x and y-intercepts of circles

The standard equation for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

plug $y = 0$ into $(x - 7)^2 + (y - 3)^2 = 5^2$

$$(x - 7)^2 + (0 - 3)^2 = 25$$
$$ (x - 7)^2 = 25 - 9 = 16$$
$$ (x - 7) = \pm 4$$

Two x-intercepts: One at $(11, 0)$ one at $(3, 0)$.

Find the y-intercepts by setting $x = 0$. Are there any?
Finding the x and y-intercepts of circles

The standard equation for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

plug $y = 0$ into $(x - 7)^2 + (y - 3)^2 = 5^2$

$$(x - 7)^2 + (0 - 3)^2 = 25$$

$$(x - 7)^2 = 25 - 9 = 16$$

$$(x - 7) = \pm 4$$

$$x = 7 + 4 = 11 \text{ or } x = 7 - 4 = 3$$

Find the y-intercepts by setting $x = 0$. Are there any?

Symmetry of graphs. Circles
Finding the x and y-intercepts of circles

The standard equation for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

Plug $y = 0$ into $(x - 7)^2 + (y - 3)^2 = 5^2$

$$(x - 7)^2 + (0 - 3)^2 = 25$$

$$(x - 7)^2 = 25 - 9 = 16$$

$$(x - 7) = \pm 4$$

$x = 7 + 4 = 11$ or $x = 7 - 4 = 3$

Two x-intercepts: One at $(11, 0)$ one at $(3, 0)$.
Finding the x and y-intercepts of circles

The standard equation for the circle of radius r centered at (h, k) is

$$(x - h)^2 + (y - k)^2 = r^2$$

Find the x-intercepts of the circle centered at $(7, 3)$ with radius 5.

Plug $y = 0$ into $(x - 7)^2 + (y - 3)^2 = 5^2$

$$(x - 7)^2 + (0 - 3)^2 = 25$$

$$(x - 7)^2 = 25 - 9 = 16$$

$$(x - 7) = \pm 4$$

$x = 7 + 4 = 11$ or $x = 7 - 4 = 3$

Two x-intercepts: One at $(11, 0)$ one at $(3, 0)$.

Find the y-intercepts by setting $x = 0$. Are there any?
The general form for circles and completing the square

Does the equation \(x^2 + 2x + y^2 - 4y = 20 \) give a circle?
The general form for circles and completing the square

Does the equation $x^2 + 2x + y^2 - 4y = 20$ give a circle?
Let’s try a wolfram alpha plot.

Let’s review Completing the square.

Expand $(x+1)^2 = x^2 + 2x + 1$.
So, $x^2 + 2x = (x+1)^2 - 1$.

Expand $(y-2)^2 = y^2 - 4y + 4$.
So, $y^2 - 4y = (y-2)^2 - 4$.

Substituting these into our original equation we get:

$$(x+1)^2 - 1 + (y-2)^2 - 4 = 20$$

$$(x+1)^2 + (y-2)^2 = 25$$

The equation for the circle of radius 5 centered at $(-1, 2)$.
The general form for circles and completing the square

Does the equation $x^2 + 2x + y^2 - 4y = 20$ give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
The general form for circles and completing the square

Does the equation $x^2 + 2x + y^2 - 4y = 20$ give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
Let’s review **Completing the square**.
- Expand $(x + 1)^2 =$
The general form for circles and completing the square

Does the equation $x^2 + 2x + y^2 - 4y = 20$ give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
Let’s review **Completing the square**.

- Expand $(x + 1)^2 = x^2 + 2x + 1$.
The general form for circles and completing the square

Does the equation \(x^2 + 2x + y^2 - 4y = 20 \) give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
Let’s review **Completing the square**.

- Expand \((x + 1)^2 = x^2 + 2x + 1\). So, \(x^2 + 2x = (x + 1)^2 - 1\)
The general form for circles and completing the square

Does the equation $x^2 + 2x + y^2 − 4y = 20$ give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
Let’s review **Completing the square**.

- Expand $(x + 1)^2 = x^2 + 2x + 1$. So, $x^2 + 2x = (x + 1)^2 − 1$
- Expand $(y − 2)^2 =$
The general form for circles and completing the square

Does the equation \(x^2 + 2x + y^2 - 4y = 20 \) give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
Let’s review **Completing the square**.

- Expand \((x + 1)^2 = x^2 + 2x + 1\). So, \(x^2 + 2x = (x + 1)^2 - 1\)
- Expand \((y - 2)^2 = y^2 - 4y + 4\).
The general form for circles and completing the square

Does the equation $x^2 + 2x + y^2 - 4y = 20$ give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
Let’s review **Completing the square**.

- Expand $(x + 1)^2 = x^2 + 2x + 1$. So, $x^2 + 2x = (x + 1)^2 - 1$
- Expand $(y - 2)^2 = y^2 - 4y + 4$. So, $y^2 - 4y = (y - 2)^2 - 4$

Substituting these into our original equation we get:

$$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 20$$

$$ (x + 1)^2 + (y - 2)^2 = 25$$

The equation for the circle of radius 5 centered at $(-1, 2)$.
The general form for circles and completing the square

Does the equation $x^2 + 2x + y^2 - 4y = 20$ give a circle? Let’s try a wolfram alpha plot. We should be able to put this in standard form. Let’s review **Completing the square**.

- Expand $(x + 1)^2 = x^2 + 2x + 1$. So, $x^2 + 2x = (x + 1)^2 - 1$
- Expand $(y - 2)^2 = y^2 - 4y + 4$. So, $y^2 - 4y = (y - 2)^2 - 4$

Substituting these into our original equation we get:

$$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 20$$
The general form for circles and completing the square

Does the equation \(x^2 + 2x + y^2 - 4y = 20\) give a circle? Let’s try a wolfram alpha plot. We should be able to put this in standard form. Let’s review **Completing the square**.

- Expand \((x + 1)^2 = x^2 + 2x + 1\). So, \(x^2 + 2x = (x + 1)^2 - 1\)
- Expand \((y - 2)^2 = y^2 - 4y + 4\). So, \(y^2 - 4y = (y - 2)^2 - 4\)

Substituting these into our original equation we get:

\[
(x + 1)^2 - 1 + (y - 2)^2 - 4 = 20
\]
\[
(x + 1)^2 + (y - 2)^2 = 25
\]
Does the equation $x^2 + 2x + y^2 - 4y = 20$ give a circle?

Let’s try a wolfram alpha plot.

We should be able to put this in standard form.

Let’s review **Completing the square**.

- Expand $(x + 1)^2 = x^2 + 2x + 1$. So, $x^2 + 2x = (x + 1)^2 - 1$
- Expand $(y - 2)^2 = y^2 - 4y + 4$. So, $y^2 - 4y = (y - 2)^2 - 4$

Substituting these into our original equation we get:

\[
(x + 1)^2 - 1 + (y - 2)^2 - 4 = 20
\]
\[
(x + 1)^2 + (y - 2)^2 = 25
\]

The equation for the circle of radius 5 centered at (−1, 2).
The general form for circles and completing the square

Does the equation $x^2 + 2x + y^2 - 4y = 20$ give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
Let’s review **Completing the square**.

- Expand $(x + 1)^2 = x^2 + 2x + 1$. So, $x^2 + 2x = (x + 1)^2 - 1$
- Expand $(y - 2)^2 = y^2 - 4y + 4$. So, $y^2 - 4y = (y - 2)^2 - 4$

Substituting these into our original equation we get:

$$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 20$$
$$ (x + 1)^2 + (y - 2)^2 = 25$$

The equation for the circle of radius 5 centered at \((-1, 2) \).
The general form for circles and completing the square

Does the equation \(x^2 + 2x + y^2 - 4y = 20 \) give a circle?
Let’s try a wolfram alpha plot.
We should be able to put this in standard form.
Let’s review **Completing the square**.

- Expand \((x + 1)^2 = x^2 + 2x + 1\). So, \(x^2 + 2x = (x + 1)^2 - 1\)
- Expand \((y - 2)^2 = y^2 - 4y + 4\). So, \(y^2 - 4y = (y - 2)^2 - 4\)

Substituting these into our original equation we get:

\[
(x + 1)^2 - 1 + (y - 2)^2 - 4 = 20
\]
\[
(x + 1)^2 + (y - 2)^2 = 25
\]

The equation for the circle of radius 5 centered at \((-1, 2)\).
Completing the square and the general equation for a circle.

Proposition

The completing the square formula says that:

\[x^2 + bx = \left(x + \frac{b}{2} \right)^2 - \frac{b^2}{4} \]

Complete the relevant squares to determine the radii (The plural of radius) and centers of the circles with equations

- \(x^2 + 4x + y^2 − 8y = 24 \)
- \(x^2 + x + y^2 − 3y = 5 \)

Homework:
F.2: 77, 78, 79, 80, 84, 85, 86
F.4: 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 21, 22, 27, 28,