Graded traces and irreducible representations of $\text{Aut}(A(\Gamma))$ acting on graded $A(\Gamma)$ and $A(\Gamma)!$

Colleen Duffy
under the direction of Robert Wilson

Rutgers University

Ph.D. Defense
April 14, 2008
Outline

Background

Two Related Constructions

Theorems Needed
 Automorphism Group
 Graded Trace

Algebra Associated with Polygons

Q_n

More Examples
Goal

- Original Goal - better understand algebra Q_n related to factorizations of noncommutative polynomials.
Graded traces and irreducible representations
Colleen Duffy

Goal

- Original Goal - better understand algebra Q_n related to factorizations of noncommutative polynomials.
- Accomplished - found decomposition of graded Q_n into S_n-modules
 - found decomposition for other algebras $A(\Gamma)$ associated with graphs Γ
 - techniques developed can be used on general $A(\Gamma)$
 - considered interesting subalgebras
History

► Classic problem - express coefficients of $P(t) = t^n + a_{n-1}t^{n-1} + \ldots + a_0 = (t - y_1)(t - y_2)\cdots(t - y_n)$ in terms of the right roots

► Q_n - algebra describing factorizations of $P(t)$

► study Q_n as an algebra associated to a directed, layered graph: lattice of subsets of \{1, ..., n\}
Idea

- Q_n has a natural grading.
- S_n acts on each homogeneous component of graded Q_n.
- Each homogeneous component can be written as a direct sum of irreducible S_n-modules.
Idea

- Q_n has a natural grading.
- S_n acts on each homogeneous component of graded Q_n.
- Each homogeneous component can be written as a direct sum of irreducible S_n-modules.
- can find decomposition for more general algebras $A(\Gamma)$ associated to directed, layered graphs Γ.
A(Γ) in words

- generated by edges in graph
- relations defined by associating a polynomial to each path in Γ and requiring that polynomials for two paths connecting same pair of vertices are equal in A(Γ)
A(\Gamma) in words

- generated by edges in graph
- relations defined by associating a polynomial to each path in \(\Gamma \) and requiring that polynomials for two paths connecting same pair of vertices are equal in \(A(\Gamma) \)

Examples: lattice of subsets of \(\{1, \ldots, n\} \), graphs whose automorphism group is the dihedral group on \(n \) elements, graphs whose automorphism groups are Coxeter groups, the complete layered graph, and the Hasse graph of the lattice of subspaces of a finite-dimensional vector space over a finite field
Layered Graph Γ

- $T(W)$ - free associative algebra on set W over field k
- Let $\Gamma = (V, E)$ - directed, layered graph with vertices V and edges E
- $V = \bigcup_{i=0}^{n} V_i$, $E = \bigcup_{i=0}^{n} E_i$, edges go from level i to level $i-1$, $V_0 = \{\ast\}$
A(\Gamma)

- path - sequence of edges $\pi = \{e_1, \ldots, e_m\}$
- $v > w$ - there exists a path from v to w.
- $e(\pi, k) := \sum_{1 \leq i_1 < \ldots < i_k \leq m} e_{i_1} \cdots e_{i_k}$
- from $P_\pi(t) = (1 - te_1) \cdots (1 - te_m)$
- can choose distinguished path from v to $*$; then write $e(v, k)$
Let R be the two-sided ideal of $T(E)$ generated by
\[\{ e(\pi_1, k) - e(\pi_2, k) \} \] such that π_1, π_2 connect same pair of vertices

\[A(\Gamma) := T(E)/R \]
A(Γ)

- Let R be the two-sided ideal of $T(E)$ generated by
 \{ $e(\pi_1, k) - e(\pi_2, k)$ \} such that π_1, π_2 connect same pair of vertices

- $A(Γ) := T(E)/R$

- Let $\hat{e}(v, k)$ denote the image in $A(Γ)$ of $e_1 \cdots e_k$.

- say (v, k) covers (w, l) if $v > w$ and $k = |v| - |w|$, write this as $(v, k) \succ (w, l)$
Theorem

[RSW, Thm 1] - Let $\Gamma = (V, E)$ be a layered graph, $V = \bigcup_{i=0}^{n} V_i$, $V_0 = \{\ast\}$. Then $\mathcal{B}(\Gamma) := \{ \hat{e}(v_1, k_1) \cdots \hat{e}(v_l, k_l) : l \geq 0, v_1, \ldots, v_l \in V_+, 1 \leq k_i \leq |v_i|, (v_i, k_i) \nmid (v_{i+1}, k_{i+1}) \}$ is a basis for $A(\Gamma)$.
Theorem

[RSW, Thm 1] - Let $\Gamma = (V, E)$ be a layered graph, $V = \bigcup_{i=0}^{n} V_i$, $V_0 = \{\ast\}$. Then $B(\Gamma) := \{ \hat{e}(v_1, k_1) \cdots \hat{e}(v_l, k_l) : l \geq 0, v_1, \ldots, v_l \in V_+, 1 \leq k_i \leq |v_i|, (v_i, k_i) \not\succ (v_{i+1}, k_{i+1}) \}$ is a basis for $A(\Gamma)$.

- write $e(v, k)$ for $\hat{e}(v, k)$ from now on
Graded $A(\Gamma)$

- 1st grading: $T(E) = \sum_i T(E)[i]$ is given by degree in the tensor algebra
- 2nd grading: $T(E) = \sum_{i \geq 0} T(E)_i$ where

 $$T(E)_i = \text{span}\{e_1 \cdots e_r : r \geq 0, e_j \in E_{l_j}, l_1 + \cdots + l_r = i\}$$

- 2nd induces filtration

- So, $T(E)$ can be identified with associated graded algebra

- $gr(T(E)/R) \cong T(E)/(grR)$

- If $(v, k) \triangleright (u, l)$, $e(v, k + l) - e(v, k)e(u, l)$ in grR
A(Γ)!

- Dual of graded algebra - $A(Γ)! := T(E^*)/(grR) \perp$
- Presentation - generators: \{e(v, 1)^*\}
 relations:
 \{e(v, 1)^* e(u, 1)^* : v \not\succ u\} \cup \{e(v, 1)^* \sum_{v \succ u} e(u, 1)^*\}
- Take fixed generators to get a subalgebra of the dual
\(A(\Gamma^\sigma) \)

- \(\sigma \) - automorphism of graph that preserves layers
- \(\Gamma^\sigma \) := \((V_\sigma, E_\sigma) \)
 - \(V_\sigma = \{ v \in V : \sigma(v) = v \} \)
 - \(E_\sigma \) - edges that connect vertices minimally
Graded traces and irreducible representations

Colleen Duffy

Background
Big picture
Definitions
Associated Graded Algebra

Two Related Constructions
Dual Algebra
Subalgebra of $\text{gr}A(\Gamma)$

Theorems Needed
Automorphism Group
Graded Trace

Algebra
Associated with Polygons
Q_n

More Examples
Coxeter groups
Complete Layered Graph
Vector Space over Finite Field

\[A(\Gamma^\sigma) \]

\begin{itemize}
 \item σ - automorphism of graph that preserves layers
 \item $\Gamma^\sigma := (V_\sigma, E_\sigma)$
 \begin{itemize}
 \item $V_\sigma = \{ v \in V : \sigma(v) = v \}$
 \item E_σ - edges that connect vertices minimally
 \end{itemize}
 \item $A(\Gamma^\sigma) := \text{span}\{ e(v_1, k_1) \cdots e(v_l, k_l) : l \geq 0, v_1, \ldots, v_l \in V_\sigma \setminus *, 1 \leq k_i \leq |v_i|, (v_i, k_i) \not> (v_{k+1}, k_{i+1}) \}$
 \item Theorem - $A(\Gamma^\sigma)$ is a subalgebra of graded $A(\Gamma)$
\end{itemize}
\(A(\Gamma^\sigma) \)

- presentation - generators:
 \[\{ e(v, k) : v \in V_\sigma, 1 \leq k \leq |v|\} \]
- relations:
 \[\{ e(v, k+l) - e(v, k)e(u, l) : v > u \in V_\sigma, k = |v| - |u| \} . \]

- can form dual of subalgebra

- \(A(\Gamma^\sigma) \) are examples of algebras associated to generalized layered graphs
Automorphism Group

Lemma

$\text{Aut}(A(\Gamma)) \supseteq k^* \times \text{Aut}(\Gamma)$

Main Theorem

If Γ satisfies i) more than two vertices in level 1, ii) no two vertices are above same set of vertices, and iii) there are either zero or two paths between any two vertices which are two levels apart in Γ, then $\text{Aut}(A(\Gamma)) = k^* \times \text{Aut}(\Gamma)$, k the base field.

Proof.

(idea) The relations in the algebra must be preserved. \qed
Definition of Graded Trace

- Hilbert series of graded algebra A -
 \[H(A, t) = \sum dim(A(\Gamma)[k])t^k \]

- Let σ be an automorphism, then the graded trace of σ on $A(\Gamma)$ is $Tr_\sigma(A(\Gamma), t) = \sum(Tr_\sigma|_{A(\Gamma)[k]})t^k$

- Because the basis of $A(\Gamma)$ is invariant under σ, the trace of σ on $grA(\Gamma)$ is the number of fixed basis elements.

- $Tr_\sigma(A(\Gamma), t)$ is the Hilbert series of $A(\Gamma^\sigma)$
Use of Graded Traces

- consider associated graded algebra, gr$A(\Gamma)$
- ϕ_1, \ldots, ϕ_l - all of the distinct irreducible representations of Aut$A(\Gamma)$
- χ_j - character afforded by ϕ_j
- Aut$A(\Gamma)$ acts on each $A(\Gamma)[i]$
- so the completely reducible Aut$A(\Gamma)$-module $A(\Gamma)[i]$
 may be written as $\bigoplus_{j=1}^{l} m_{ij} \phi_j$

- $\vec{m} = (C^T)^{-1} \vec{Tr}(t)$, C is character table
Calculating Graded Trace - Method 1

Let $| \cdot |$ denote the graded trace in this theorem.

$W(\Gamma^\sigma) := \text{span}\{e(v, k) : l \geq 0, v \in V_\sigma, 1 \leq k \leq |v|\}$

$\tilde{R}(\Gamma^\sigma) := \text{span}\{e(v, k)e(u, l) : v > u \in V_\sigma, k = |v| - |u|\}$

Theorem

$|A(\Gamma^\sigma)| = \frac{1}{1 - |W(\Gamma^\sigma)| + |\tilde{R}(\Gamma^\sigma)| - |\tilde{R}(\Gamma^\sigma)W(\Gamma^\sigma)\cap W(\Gamma^\sigma)\tilde{R}(\Gamma^\sigma)| + \cdots}$
Calculating Graded Trace - Method 2

Main Theorem

\[Tr_\sigma(A(\Gamma), t) = \frac{1 - t}{1 - t} \sum_{v_1 > \cdots > v_l \geq^*} (-1)^{l-1} t |v_1| - |v_l| \]

where \(v_1, \ldots, v_l \in V_\sigma \).

Proof.
(idea) Write linear recurrences in matrix form involving subsets of the basis and of products of generators. We get a Möbius-type matrix. \(\square \)
Graded traces and irreducible representations

Colleen Duffy

Background
Big picture
Definitions
Associated Graded Algebra

Two Related Constructions
Dual Algebra
Subalgebra of \(\text{gr}A(\Gamma) \)

Theorems Needed
Automorphism Group
Graded Trace

Algebra
Associated with Polygons

\(A(\Gamma_{D_n}) \)
Hasse graph of \(n \)-gon.

\[
A(\Gamma_{D_n})
\]

\[\text{Theorem}\]

a) If \(n \geq 3 \), \(\text{Aut}(A(\Gamma_{D_n})) = k^* \times D_n \), \(k \) the base field

b) If \(n = 2 \), \(\text{Aut}(A(\Gamma_{D_2})) \cong \{ M \in \text{GL}(3, k) : M = \begin{bmatrix}
c_1^1 + c_2^1 & c_2^2 - c_1^2 & c_2^1 - c_1^2 \\
0 & c_1^1 & c_2^1 \\
0 & c_2^2 & c_1^1 + c_1^2 - c_1^2
\end{bmatrix}, c_i^j \in k \ \forall i, j \} \]

More Examples
Coxeter groups
Complete Layered Graph
Vector Space over Finite Field
Example using Method 1:

- \(W(\Gamma_{D_n}^{id}) \) has basis \{ \(e(u, 3) \), \(e(u, 2) \), \(e(u, 1) \),
\(e(v_{i,i+1}, 2) \), \(e(v_{i,i+1}, 1) \), \(e(w_i, 1) \), \(1 \leq i \leq n \) \}
Example using Method 1:

- $W(\Gamma^i_{D_n})$ has basis $\{e(u, 3), e(u, 2), e(u, 1), e(v_{i\ i+1}, 2), e(v_{i \ i+1}, 1), e(w_i, 1), 1 \leq i \leq n\}$
- Reducible words of degree 2: $e(u, 2)e(w_i, 1), e(u, 1)e(v_{i \ i+1}, 2), e(u, 1)e(v_{i \ i+1}, 1), e(v_{i \ i+1}, 1)e(w_i, 1), e(v_{i \ i+1}, 1)e(w_{i+1}, 1)$
Example using Method 1:

- \(W(\Gamma_{D_n}^{id}) \) has basis \(\{ e(u, 3), e(u, 2), e(u, 1), e(v_{i+1}, 2), e(v_{i+1}, 1), e(w_i, 1), 1 \leq i \leq n \} \)

- Reducible words of degree 2:
 - \(e(u, 2)e(w_i, 1) \),
 - \(e(u, 1)e(v_{i+1}, 2) \),
 - \(e(u, 1)e(v_{i+1}, 1) \),
 - \(e(v_{i+1}, 1)e(w_i, 1) \),
 - \(e(v_{i+1}, 1)e(w_{i+1}, 1) \)

- Overlaps of reducible words:
 - \(e(u, 1)e(v_{i+1}, 1)e(w_i, 1) \),
 - \(e(u, 1)e(v_{i+1}, 1)e(w_{i+1}) \)
Example using Method 1:

- \(W(\Gamma_{D_n}^{id}) \) has basis \(\{ e(u, 3), e(u, 2), e(u, 1), e(v_{i,i+1}, 2), e(v_{i,i+1}, 1), e(w_i, 1), 1 \leq i \leq n \} \)

- Reducible words of degree 2: \(e(u, 2)e(w_i, 1), e(u, 1)e(v_{i,i+1}, 2), e(u, 1)e(v_{i,i+1}, 1), e(v_{i,i+1}, 1)e(w_i, 1), e(v_{i,i+1}, 1)e(w_{i+1}, 1) \)

- Overlaps of reducible words:
 \(e(u, 1)e(v_{i,i+1}, 1)e(w_i, 1), e(u, 1)e(v_{i,i+1}, 1)e(w_{i+1}) \)

- Thus, \(Tr_{id}(A(\Gamma_{D_n}), t) = \frac{1}{1 - ((1+n+n)t - ((1+n)-(n+n+n))t^2 + (1-(n+n)+(n+n))t^3)} = \frac{1}{1 - ((2n+1)t - (2n-1)t^2 + t^3)} \)
Example Using Method 2:

$ s = (2n)(3n - 1)(4n - 2) \cdots \text{ (n even)} $ fixes the top vertex, the minimal vertex, and two vertices on level two

\[\Gamma_D^{s_{2n}} \]

\[U \rightarrow V_{1,2} \rightarrow V_{n/2+1} \rightarrow V_{n/2+2} \rightarrow \ast \]
Example Using Method 2:

- $s = (2n)(3n - 1)(4n - 2) \cdots$ (n even) fixes the top vertex, the minimal vertex, and two vertices on level two.

- coefficient of t^0: 4 (each vertex)

- of t^1: $u > v_{12}$, $u > v_{n/2 + 1/2}^n + 2$

- of t^2: $v_{12} > *$, $v_{n/2 + 1/2}^n + 2 > *$

- of t^3: $u > *$, $u > v_{12} > *$, and $u > v_{n/2 + 1/2}^n + 2 > *$.

- $Tr_s(t) = \frac{1-t}{1-t(4-2t-2t^2+t^3)} = \frac{1-t}{1-t(2-t)(2-t^2)}$

\[\Gamma^s_{D_{2n}}\]
A(Γ_{D_n}) - multiplicities

- Graded trace generating functions:
 \[a = Tr_{id}(A(Γ_{D_n}), t) = \frac{1-t}{1-(2n+2)t+4nt^2-2nt^3+t^4} \]
 \[b = Tr_{(12...n)i}(A(Γ_{D_n}), t) = \frac{1-t}{1-t(2-t^3)} \]
 \[c = Tr_S(A(Γ_{D_n}), t) = Tr_{(12...n)s}(t) = \frac{1-t}{1-t(2-t)(2-t^2)} \]

- Let n be even. Then, \(\vec{m}(t) = \)
Q_n

Algebra associated with the lattice of subsets of \(\{1, \ldots, n\} \)

Theorem

If \(n \geq 3 \), \(\text{Aut}(Q_n) = k^* \times S_n \).
Theorem

Let $\sigma \in S_n$ and $\sigma = \sigma_1 \cdot \cdot \cdot \sigma_m$ be its cycle decomposition. Denote the length of σ_j by i_j. Then

\[
\text{Tr}_\sigma(Q_n, t) = \frac{1 - t}{1 - t \prod_{j=1}^{m} (2 - t^{i_j})}
\]
Proof: If \(w \subseteq \{1, \ldots, n\} \) is \(\sigma \)-invariant, let \(\|w\| \) be the number of \(\sigma \)-orbits in \(w \). Also, let \(O_j \) denote the non-trivial orbit of \(\sigma_j \).

By some lemmas,

\[
\sum_{v_1 \supset \cdots \supset v_l \supseteq \emptyset} (-1)^l t^{\|v_1\| - \|v_l\| + 1}
\]

\[
= \sum_{\{1, \ldots, n\} \supset v_1 \supseteq v_l \supseteq \emptyset} (-1)^{\|v_1\| - \|v_l\| + 1} t^{\|v_1\| - \|v_l\| + 1}
\]

\[
= \sum_{w, v_l} (-1)^{\|w\| + 1} t^{\|w\| + 1} = \sum_{w} 2^{-\|w\|} (-1)^{\|w\| + 1} t^{\|w\| + 1}
\]
Proof continued:
The σ-invariant sets w are unions of σ-orbits. Write $a_j = 1$ if O_j is contained in w and $a_j = 0$ if not. We can then write $\sum_w 2^{m-\|w\|}(-1)^{\|w\|+1}|w|+1$ as

$$\sum_{a_1,\ldots,a_m\in\{0,1\}} (-1)\sum a_j+1 2^{m-\sum a_j} t^{\sum(a_ji_j)+1} =$$

$$-t \sum_{a_1,\ldots,a_m\in\{0,1\}} \prod_{j=1}^m (-1)^{a_j} 2^{1-a_j} t^{a_ji_j}$$

$$= -t \prod_{j=1}^m \sum_{a_j=0} \sum_{a_j=1} (-1)^{a_j} 2^{1-a_j} t^{a_ji_j}$$

$$= -t \prod_{j=1}^m (2 - t^{i_j})$$
Q_n - example

- Example for $n = 4$ and 1st three degrees:

<table>
<thead>
<tr>
<th></th>
<th>χ_{triv}</th>
<th>χ_{sgn}</th>
<th>χ_3</th>
<th>χ_{reg}</th>
<th>$\chi_{\text{sgn}\times\text{reg}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\phi,1}$</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$m_{\phi,2}$</td>
<td>26</td>
<td>1</td>
<td>17</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>$m_{\phi,3}$</td>
<td>219</td>
<td>54</td>
<td>239</td>
<td>434</td>
<td>273</td>
</tr>
</tbody>
</table>

- Can write multiplicities in terms of Frobenius formula
Q_n - example

- Example for $n = 4$ and 1st three degrees:

<table>
<thead>
<tr>
<th></th>
<th>χ_{triv}</th>
<th>χ_{sgn}</th>
<th>χ_3</th>
<th>χ_{reg}</th>
<th>$\chi_{\text{sgn} \times \text{reg}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\phi,1}$</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$m_{\phi,2}$</td>
<td>26</td>
<td>1</td>
<td>17</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>$m_{\phi,3}$</td>
<td>219</td>
<td>54</td>
<td>239</td>
<td>434</td>
<td>273</td>
</tr>
</tbody>
</table>

- Can write multiplicities in terms of Frobenius formula

$$Tr_{\sigma}(Q^l_n, t) = \frac{1 + t \prod_{k=1}^{m} (2 - (-t)^i_k)}{1 + t}$$
Octahedron
One example is the algebra associated to the Hasse graph of the octahedron.

- Automorphism group is k^* times the symmetry group of the octahedron.
- 10 conjugacy classes, 6 distinct graded trace generating functions
- Same results for the algebra associated with the Hasse graph of the cube
Complete Layered Graph
Say there are r_j vertices in level j, $j > 0$ (1 minimal vertex in level 0). The automorphism group of the algebra contains $k^* \times S_{r_1} \times \cdots \times S_{r_n}$.

Theorem
Let m_j be the number of vertices in level j fixed by $\sigma_{r_j} \in S_{r_j}$. Let $\sigma = \sigma_{r_1} \times \cdots \times \sigma_{r_n} \in S_{r_1} \times \cdots \times S_{r_n}$. Then
$$Tr_{\sigma}(A(\Gamma_{[r_1,\ldots,r_n]}), t) = \frac{1-t}{1-t \sum_{k=0}^{n} \sum_{j=k}^{n} (-1)^k m_j (m_{j-1}-1) (m_{j-2}-1) \cdots (m_{j-k+1}-1) m_{j-k} t^k}$$
Hasse Graph of the Lattice of Subspaces of a Finite-dimensional Vector Space over a Finite Field

- Denote algebra by $A(L(n, q))$
- Automorphism group contains $k^* \times PGL_n(F_q)$
- Write matrix in $PGL_n(F_q)$ in canonical form (we will consider those that can be put into Jordan canonical form)
- Only need to consider matrices with one eigenvalue
A(L(n, q)) - reduction to one eigenvalue

Proposition

Let \(T \in \text{GL}_n(F_q) \) be a matrix in Jordan canonical form with distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \). Let \(T_{\lambda_j} \in \text{GL}_{n_j}(F_q) \) be the submatrix of \(T \) containing only those blocks with eigenvalue \(\lambda_j \). Finally say \(\frac{1-t}{1-tf_{\lambda_j}} \) is the graded trace generating function of \(T_{\lambda_j} \) acting on \(A(L(n_j, q)) \). Then

\[
\text{Tr}_T(A(L(n, q)), t) = \frac{1-t}{k} \cdot \left(1 - t \prod_{j=1}^{k} f_{\lambda_j} \right).
\]
A(L(n, q)) - proof

Proof.

\[L(n, q)^T = L(n, q)^{T_{\lambda_1}} \times \cdots \times L(n, q)^{T_{\lambda_k}}. \]

\[f_{\lambda_j} = \sum_{v_1 > \cdots > v_l \geq *} (-1)^{l+1} t|v_1| - |v_l|. \]

\[(v, w)-\text{entry of Möbius matrix } \hat{\mu} \text{ (comes from proof of Method 2) is } \sum_{v=v_1 > \cdots > v_l = w \geq *} (-1)^{l+1} t|v_1| - |v_l|. \]

\[\vec{1}^T \hat{\mu} \vec{1} = \sum_{v_1 > \cdots > v_l \geq *} (-1)^{l+1} t|v_1| - |v_l| = f \]

\[\hat{\mu}_{G \times H} = \hat{\mu}_G \otimes \hat{\mu}_H \]
A(L(n, q)) - proof continued

Proof.

\[f_{\lambda_1} \times \cdots \times f_{\lambda_k} = \]
\[= \left(T^T_{L(n, q)^{T_{\lambda_1}}} \otimes \cdots \otimes T^T_{L(n, q)^{T_{\lambda_k}}} \right) \left(\hat{\mu}_{L(n, q)^{T_{\lambda_1}}} \otimes \cdots \otimes \hat{\mu}_{L(n, q)^{T_{\lambda_k}}} \right) \left(T^T_{L(n, q)^{T_{\lambda_1}}} \otimes \cdots \otimes T^T_{L(n, q)^{T_{\lambda_k}}} \right) \]
\[= f_{\lambda_1} \cdots f_{\lambda_k}. \]
Graded traces and irreducible representations

Colleen Duffy

Background
Big picture
Definitions
Associated Graded Algebra

Two Related Constructions
Dual Algebra
Subalgebra of \(\text{gr}A(\Gamma) \)

Theorems Needed
Automorphism Group
Graded Trace

Algebra
Associated with Polygons

\(Q_n \)

More Examples
Coxeter groups
Complete Layered Graph
Vector Space over Finite Field

\[A(L(n, q)) \] - counting subspaces

- \(T \) has one eigenvalue \(\lambda \), \(k \) blocks
- \(V = V_a = V_{a_1} \oplus \cdots \oplus V_{a_k} \) indecomposable
- \(W = W[i] = W_{i_1} \oplus \cdots \oplus W_{i_r} \oplus W_{i_r'+1} \oplus \cdots \oplus W_{i_r} - \) invariant subspace of \(V \)
- \(i_1 \geq i_2 \geq \cdots \geq i_r' > 1, \ i_r'+1 = \cdots = i_r = 1, \ r \leq k \).
- \(V_{[a-1]} = V_{a_1-1} \oplus \cdots \oplus V_{a_k-1} \)
- \(N_{[a,i]} \) - number of invariant subspaces \(W[i] \) of \(V[a] \)
A(L(n, q)) - counting subspaces

Proposition

The number of invariant $W_{[i]} \subseteq V_{[a]}$ is

$N_{[a,i]} = (q^{k-r})^{r'} \binom{k-r'}{r-r'} q^{N_{[a-1,i-1]}}$.
\[A(L(n, q)) - \text{counting subspaces} \]

Proposition

The number of invariant \(W[i] \subseteq V[a] \) is

\[
N[a,i] = (q^{k-r})^{r'} \left(\frac{k-r'}{r-r'} \right) q N[a-1,i-1].
\]

This proposition and the previous are enough to allow us to calculate the graded trace for any matrix in Jordan canonical form acting on \(A(L(n, q)) \).
Graded traces and irreducible representations
Colleen Duffy

Background
Big picture
Definitions
Associated Graded Algebra

Two Related Constructions
Dual Algebra
Subalgebra of $grA(\Gamma)$

Theorems Needed
Automorphism Group
Graded Trace

Algebra
Associated with Polygons
Q_n

More Examples
Coxeter groups
Complete Layered Graph
Vector Space over Finite Field

An Example

$$
\begin{align*}
V_1^a \oplus V_1^a \oplus V_1^b \oplus V_1^b & \quad 1 \\
W_1^a \oplus W_1^a \oplus W_1^b, W_1^a \oplus W_1^b & \quad q + 1, q + 1 \\
W_1^a \oplus W_1^a, W_1^a \oplus W_1^b, W_1^b \oplus W_1^b & \quad 1, (q + 1)^2, 1 \\
W_1^a, W_1^b & \quad q + 1, q + 1
\end{align*}
$$

$$
\begin{align*}
2V_1^a \oplus 2V_1^b & \\
2V_1^a \oplus V_1^b, q + 1 & \\
2V_1^a, 1 & \\
V_1^a, q + 1 & \\
L(4, q)^T_{2V_1^a \oplus 2V_1^b} & (0)
\end{align*}
$$
An Example

\[T_{2V_1^a \oplus 2V_1^b} \]

\[T_{2V_1^a \oplus V_1^b, q + 1} \]

\[T_{V_1^a \oplus 2V_1^b, q + 1} \]

\[T_{2V_1^a, 1} \]

\[T_{V_1^a, q + 1} \]

\[T_{V_1^b, q + 1} \]

\[T_{2V_1^b, 1} \]

\[L(4, q) \]

\[\frac{1 - t}{1 - t((q + 3) - 2(q + 1)t + qt^2)^2} \]
Questions?